IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v212y2008i3p244-255.html
   My bibliography  Save this article

Three way k-fold cross-validation of resource selection functions

Author

Listed:
  • Wiens, Trevor S.
  • Dale, Brenda C.
  • Boyce, Mark S.
  • Kershaw, G. Peter

Abstract

A resource selection function (RSF) yields a prediction that is proportional to the probability of use of a resource unit by an organism. Because many apparently adequate models fail in new areas or time periods we developed a method for model selection and evaluation based on the model’s ability to predict generally, spatially, and temporally. This work is an extension of previous work using k-fold cross-validation to evaluate models developed using presence-only study designs. A RSF model’s utility is its ability to predict, so this method is applicable to any RSF model regardless of study design. The use and application of our proposed 3-way evaluation using the RSF Plot Index (RPI) statistic is illustrated using survey data of grassland birds, Landsat imagery, soil data, and a Digital Elevation Model from the Canadian Forces Base Suffield in southeastern Alberta. The sensitivity of the RPI statistic to the number and placement of bins is addressed and a method is presented to ameliorate this problem. The 3-way method provides the means to not only select the model with the best predictive power, but to understand the limitations of all models under consideration. Test results of best models using an independent field season are presented.

Suggested Citation

  • Wiens, Trevor S. & Dale, Brenda C. & Boyce, Mark S. & Kershaw, G. Peter, 2008. "Three way k-fold cross-validation of resource selection functions," Ecological Modelling, Elsevier, vol. 212(3), pages 244-255.
  • Handle: RePEc:eee:ecomod:v:212:y:2008:i:3:p:244-255
    DOI: 10.1016/j.ecolmodel.2007.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380007005339
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2007.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    2. Nguyen, Khanh T.P. & Fouladirad, Mitra & Grall, Antoine, 2018. "Model selection for degradation modeling and prognosis with health monitoring data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 105-116.
    3. Willcock, Simon & Martínez-López, Javier & Hooftman, Danny A.P. & Bagstad, Kenneth J. & Balbi, Stefano & Marzo, Alessia & Prato, Carlo & Sciandrello, Saverio & Signorello, Giovanni & Voigt, Brian & Vi, 2018. "Machine learning for ecosystem services," Ecosystem Services, Elsevier, vol. 33(PB), pages 165-174.
    4. Hong-Sen Yan & Yu-Fang Wang, 2019. "Matching decision method for knowledgeable manufacturing system and its production environment," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 771-782, February.
    5. Benali, L. & Notton, G. & Fouilloy, A. & Voyant, C. & Dizene, R., 2019. "Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components," Renewable Energy, Elsevier, vol. 132(C), pages 871-884.
    6. Voyant, Cyril & Motte, Fabrice & Fouilloy, Alexis & Notton, Gilles & Paoli, Christophe & Nivet, Marie-Laure, 2017. "Forecasting method for global radiation time series without training phase: Comparison with other well-known prediction methodologies," Energy, Elsevier, vol. 120(C), pages 199-208.
    7. Jian Qin & Yipeng Wang & Jialuo Ding & Stewart Williams, 2022. "Optimal droplet transfer mode maintenance for wire + arc additive manufacturing (WAAM) based on deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 2179-2191, October.
    8. Qingqing Liu & Nianping Li & Yongga A & Jiaojiao Duan & Wenyun Yan, 2021. "The Evaluation of the Corrosion Rates of Alloys Applied to the Heating Tower Heat Pump (HTHP) by Machine Learning," Energies, MDPI, vol. 14(7), pages 1-13, April.
    9. Voyant, Cyril & Notton, Gilles & Darras, Christophe & Fouilloy, Alexis & Motte, Fabrice, 2017. "Uncertainties in global radiation time series forecasting using machine learning: The multilayer perceptron case," Energy, Elsevier, vol. 125(C), pages 248-257.
    10. Omid Ghorbanzadeh & Hashem Rostamzadeh & Thomas Blaschke & Khalil Gholaminia & Jagannath Aryal, 2018. "A new GIS-based data mining technique using an adaptive neuro-fuzzy inference system (ANFIS) and k-fold cross-validation approach for land subsidence susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 497-517, November.
    11. Voyant, Cyril & Soubdhan, Ted & Lauret, Philippe & David, Mathieu & Muselli, Marc, 2015. "Statistical parameters as a means to a priori assess the accuracy of solar forecasting models," Energy, Elsevier, vol. 90(P1), pages 671-679.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:212:y:2008:i:3:p:244-255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.