IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v210y2008i1p58-70.html
   My bibliography  Save this article

Characterization of regime shifts in environmental time series with recurrence quantification analysis

Author

Listed:
  • Zaldívar, José-Manuel
  • Strozzi, Fernanda
  • Dueri, Sibylle
  • Marinov, Dimitar
  • Zbilut, Joseph P.

Abstract

A non-linear time series analysis technique, recurrence quantification analysis (RQA) based on recurrence plots (RP), is proposed in this paper for the characterization of regime shifts in environmental time series. Its application is illustrated for two case studies: lake eutrophication by excessive phosphorous and the regime shift that occurred in Ringkøbing Fjord when water exchange with the North Sea was modified. The results show that RQA is robust against high noise levels (up to 100%) and may be easily implemented on-line. In addition, oxygen dynamics in a Mediterranean coastal lagoon (Sacca di Goro) is also analyzed and the results compared with surrogate time series with oxygen concentration at saturation. RPs could be used for graphically exploring possible thresholds or breaking points, whereas RQA parameters are suited for locating them. The main drawback is the need of a constant sampling frequency with no gaps, which may be problematic for some environmental time series.

Suggested Citation

  • Zaldívar, José-Manuel & Strozzi, Fernanda & Dueri, Sibylle & Marinov, Dimitar & Zbilut, Joseph P., 2008. "Characterization of regime shifts in environmental time series with recurrence quantification analysis," Ecological Modelling, Elsevier, vol. 210(1), pages 58-70.
  • Handle: RePEc:eee:ecomod:v:210:y:2008:i:1:p:58-70
    DOI: 10.1016/j.ecolmodel.2007.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380007003638
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2007.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seuront, Laurent, 2004. "Small-scale turbulence in the plankton: low-order deterministic chaos or high-order stochasticity?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 341(C), pages 495-525.
    2. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    3. Zeileis, Achim & Kleiber, Christian & Kramer, Walter & Hornik, Kurt, 2003. "Testing and dating of structural changes in practice," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 109-123, October.
    4. Li, Chin-Shang & Hunt, Daniel, 2004. "Regression splines for threshold selection with application to a random-effects logistic dose-response model," Computational Statistics & Data Analysis, Elsevier, vol. 46(1), pages 1-9, May.
    5. Strozzi, Fernanda & Zaldı́var, José-Manuel & Zbilut, Joseph P, 2002. "Application of nonlinear time series analysis techniques to high-frequency currency exchange data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(3), pages 520-538.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard Aspinall & Michele Staiano & Diane Pearson, 2021. "Emergent Properties of Land Systems: Nonlinear Dynamics of Scottish Farming Systems from 1867 to 2020," Land, MDPI, vol. 10(11), pages 1-27, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lasse Loepfe & Jordi Martinez-Vilalta & Josep Piñol, 2012. "Management alternatives to offset climate change effects on Mediterranean fire regimes in NE Spain," Climatic Change, Springer, vol. 115(3), pages 693-707, December.
    2. Ian Hodge & William M. Adams, 2016. "Short-Term Projects versus Adaptive Governance: Conflicting Demands in the Management of Ecological Restoration," Land, MDPI, vol. 5(4), pages 1-17, November.
    3. Jenerette, G. Darrel & Lal, Rattan, 2007. "Modeled carbon sequestration variation in a linked erosion–deposition system," Ecological Modelling, Elsevier, vol. 200(1), pages 207-216.
    4. Rustici, M. & Ceccherelli, G. & Piazzi, L., 2017. "Predator exploitation and sea urchin bistability: Consequence on benthic alternative states," Ecological Modelling, Elsevier, vol. 344(C), pages 1-5.
    5. Rodrigues, João & Domingos, Tiago & Conceição, Pedro & Belbute, José, 2005. "Constraints on dematerialisation and allocation of natural capital along a sustainable growth path," Ecological Economics, Elsevier, vol. 54(4), pages 382-396, September.
    6. Xu Luo & Hong S. He & Yu Liang & Jacob S. Fraser & Jialin Li, 2018. "Mitigating the Effects of Climate Change through Harvesting and Planting in Boreal Forests of Northeastern China," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    7. Carlos Sanz-Lazaro, 2019. "A Framework to Advance the Understanding of the Ecological Effects of Extreme Climate Events," Sustainability, MDPI, vol. 11(21), pages 1-18, October.
    8. Teh, Su Yean & DeAngelis, Donald L. & Sternberg, Leonel da Silveira Lobo & Miralles-Wilhelm, Fernando R. & Smith, Thomas J. & Koh, Hock-Lye, 2008. "A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades," Ecological Modelling, Elsevier, vol. 213(2), pages 245-256.
    9. Grolleau, Gilles & Ibanez, Lisette & Mzoughi, Naoufel, 2020. "Moral judgment of environmental harm caused by a single versus multiple wrongdoers: A survey experiment," Ecological Economics, Elsevier, vol. 170(C).
    10. Kong, Xiang-Zhen & Jørgensen, Sven Erik & He, Wei & Qin, Ning & Xu, Fu-Liu, 2013. "Predicting the restoration effects by a structural dynamic approach in Lake Chaohu, China," Ecological Modelling, Elsevier, vol. 266(C), pages 73-85.
    11. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    12. Chang, Bi-Juan & Hung, Mao-Wei, 2021. "Corporate debt and cash decisions: A nonlinear panel data analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 15-37.
    13. Sonia Kéfi & Vishwesha Guttal & William A Brock & Stephen R Carpenter & Aaron M Ellison & Valerie N Livina & David A Seekell & Marten Scheffer & Egbert H van Nes & Vasilis Dakos, 2014. "Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    14. Monika Winn & Manfred Kirchgeorg & Andrew Griffiths & Martina K. Linnenluecke & Elmar Günther, 2011. "Impacts from climate change on organizations: a conceptual foundation," Business Strategy and the Environment, Wiley Blackwell, vol. 20(3), pages 157-173, March.
    15. Yonglin Shen & Xiuguo Liu, 2015. "Phenological Changes of Corn and Soybeans over U.S. by Bayesian Change-Point Model," Sustainability, MDPI, vol. 7(6), pages 1-23, May.
    16. Duncan A. O’Brien & Smita Deb & Gideon Gal & Stephen J. Thackeray & Partha S. Dutta & Shin-ichiro S. Matsuzaki & Linda May & Christopher F. Clements, 2023. "Early warning signals have limited applicability to empirical lake data," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Can Askan Mavi & Nicolas Quérou, 2020. "Common pool resource management and risk perceptions," DEM Discussion Paper Series 20-25, Department of Economics at the University of Luxembourg.
    18. Shana M. Sundstrom & Craig R. Allen & David G. Angeler, 2020. "Scaling and discontinuities in the global economy," Journal of Evolutionary Economics, Springer, vol. 30(2), pages 319-345, April.
    19. Therese Lindahl & Anne-Sophie Crépin & Caroline Schill, 2016. "Potential Disasters can Turn the Tragedy into Success," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 657-676, November.
    20. Yan Cheng & Stefan Oehmcke & Martin Brandt & Lisa Rosenthal & Adrian Das & Anton Vrieling & Sassan Saatchi & Fabien Wagner & Maurice Mugabowindekwe & Wim Verbruggen & Claus Beier & Stéphanie Horion, 2024. "Scattered tree death contributes to substantial forest loss in California," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:210:y:2008:i:1:p:58-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.