IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v208y2007i1p9-16.html
   My bibliography  Save this article

The modified niche model: Including detritus in simple structural food web models

Author

Listed:
  • Halnes, Geir
  • Fath, Brian D.
  • Liljenström, Hans

Abstract

Food webs are constructed as structural directed graphs that describe “who eats whom,” but it is common to interpret them as energy flow diagrams where predation represents an energy transfer from the prey to the predator. It is the aim of this work to demonstrate that food webs are incomplete as energy flow diagrams if they ignore passive flows to detritus (dead organic material). While many ecologists do include detritus in conceptual and mathematical models, the detrital omission is still commonly found. Often detritus is either ignored or treated as an unlimited energy source, yet all organisms contribute to the detritus pool, which can be an energy source for other species in the system. This feedback loop is of high importance, since it increases the number of pathways available for energy flows, revealing the significance of indirect effects, and making the functional role of the top predators less clear. In this work we propose the modified niche model by adding a detritus compartment to the niche model. We demonstrate the effect of structural loops that result from feeding on detritus, by comparing empirical data sets to five different assembly models: (1) cascade, (2) constant connectance, (3) niche, (4) modified niche (original in this work), and (5) cyber-ecosystem. Of these models, only the last two explicitly include detritus. We show that when passive flows to detritus are included in the food web structure, the structure becomes more robust to the removal of individual nodes or connections. In addition, we show that food web models that include the detritus feedback loop perform better with respect to several structural network metrics.

Suggested Citation

  • Halnes, Geir & Fath, Brian D. & Liljenström, Hans, 2007. "The modified niche model: Including detritus in simple structural food web models," Ecological Modelling, Elsevier, vol. 208(1), pages 9-16.
  • Handle: RePEc:eee:ecomod:v:208:y:2007:i:1:p:9-16
    DOI: 10.1016/j.ecolmodel.2007.04.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380007002475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2007.04.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin McCann & Alan Hastings & Gary R. Huxel, 1998. "Weak trophic interactions and the balance of nature," Nature, Nature, vol. 395(6704), pages 794-798, October.
    2. Diego Garlaschelli & Guido Caldarelli & Luciano Pietronero, 2003. "Universal scaling relations in food webs," Nature, Nature, vol. 423(6936), pages 165-168, May.
    3. Fath, Brian D. & Halnes, Geir, 2007. "Cyclic energy pathways in ecological food webs," Ecological Modelling, Elsevier, vol. 208(1), pages 17-24.
    4. Richard J. Williams & Neo D. Martinez, 2000. "Simple rules yield complex food webs," Nature, Nature, vol. 404(6774), pages 180-183, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandridis, Nikolaos & Dambacher, Jeffrey M. & Jean, Fred & Desroy, Nicolas & Bacher, Cédric, 2017. "Qualitative modelling of functional relationships in marine benthic communities," Ecological Modelling, Elsevier, vol. 360(C), pages 300-312.
    2. Hosack, Geoffrey R. & Li, Hiram W. & Rossignol, Philippe A., 2009. "Sensitivity of system stability to model structure," Ecological Modelling, Elsevier, vol. 220(8), pages 1054-1062.
    3. Lin, Yangchen & Sutherland, William J., 2013. "Color and degree of interspecific synchrony of environmental noise affect the variability of complex ecological networks," Ecological Modelling, Elsevier, vol. 263(C), pages 162-173.
    4. Galychyn, Oleksandr, 2022. "Towards sustainable cities: A multi-criteria assessment framework for studying urban metabolism," MPRA Paper 121584, University Library of Munich, Germany, revised 11 May 2022.
    5. Fath, Brian D. & Scharler, Ursula M. & Ulanowicz, Robert E. & Hannon, Bruce, 2007. "Ecological network analysis: network construction," Ecological Modelling, Elsevier, vol. 208(1), pages 49-55.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scotti, Marco & Bondavalli, Cristina & Bodini, Antonio, 2009. "Linking trophic positions and flow structure constraints in ecological networks: Energy transfer efficiency or topology effect?," Ecological Modelling, Elsevier, vol. 220(21), pages 3070-3080.
    2. Fath, Brian D. & Killian, Megan C., 2007. "The relevance of ecological pyramids in community assemblages," Ecological Modelling, Elsevier, vol. 208(2), pages 286-294.
    3. Yuguang Yang & Katharine Z. Coyte & Kevin R. Foster & Aming Li, 2023. "Reactivity of complex communities can be more important than stability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Fath, Brian D., 2007. "Structural food web regimes," Ecological Modelling, Elsevier, vol. 208(2), pages 391-394.
    5. Jiang Zhang & Lingfei Wu, 2013. "Allometry and Dissipation of Ecological Flow Networks," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
    6. Richard J. Williams & Neo D. Martinez, 2001. "Stabilization of Chaotic and Non-Permanent Food Web Dynamics," Working Papers 01-07-037, Santa Fe Institute.
    7. Anzhi Sheng & Qi Su & Aming Li & Long Wang & Joshua B. Plotkin, 2023. "Constructing temporal networks with bursty activity patterns," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Colton Brehm & Astrid Layton, 2021. "Nestedness of eco‐industrial networks: Exploring linkage distribution to promote sustainable industrial growth," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 205-218, February.
    9. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    10. Fath, Brian D. & Halnes, Geir, 2007. "Cyclic energy pathways in ecological food webs," Ecological Modelling, Elsevier, vol. 208(1), pages 17-24.
    11. Jihui Han & Wei Li & Longfeng Zhao & Zhu Su & Yijiang Zou & Weibing Deng, 2017. "Community detection in dynamic networks via adaptive label propagation," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-16, November.
    12. Liu, Yan & Mei, Jingling & Li, Wenxue, 2018. "Stochastic stabilization problem of complex networks without strong connectedness," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 304-315.
    13. Dai, Chuanjun & Zhao, Min & Chen, Lansun, 2012. "Complex dynamic behavior of three-species ecological model with impulse perturbations and seasonal disturbances," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 84(C), pages 83-97.
    14. Nonaka, Etsuko & Kuparinen, Anna, 2023. "Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs," Ecological Modelling, Elsevier, vol. 476(C).
    15. George Van Voorn & Geerten Hengeveld & Jan Verhagen, 2020. "An agent based model representation to assess resilience and efficiency of food supply chains," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-27, November.
    16. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Miehls, Andrea L. Jaeger & Mason, Doran M. & Frank, Kenneth A. & Krause, Ann E. & Peacor, Scott D. & Taylor, William W., 2009. "Invasive species impacts on ecosystem structure and function: A comparison of the Bay of Quinte, Canada, and Oneida Lake, USA, before and after zebra mussel invasion," Ecological Modelling, Elsevier, vol. 220(22), pages 3182-3193.
    18. María Jesús Ávila-Gutiérrez & Alejandro Martín-Gómez & Francisco Aguayo-González & Juan Ramón Lama-Ruiz, 2020. "Eco-Holonic 4.0 Circular Business Model to Conceptualize Sustainable Value Chain towards Digital Transition," Sustainability, MDPI, vol. 12(5), pages 1-32, March.
    19. Sabine Dritz & Rebecca A. Nelson & Fernanda S. Valdovinos, 2023. "The role of intra-guild indirect interactions in assembling plant-pollinator networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Zarbá, Lucía & Brown, Mark T., 2015. "Cycling emergy: computing emergy in trophic networks," Ecological Modelling, Elsevier, vol. 315(C), pages 37-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:208:y:2007:i:1:p:9-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.