IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v91y2006i3p360-368.html
   My bibliography  Save this article

Nonlinear autoregressive models and long memory

Author

Listed:
  • Kapetanios, George

Abstract

This note shows that regime switching nonlinear autoregressive models widely used in the time series literature can exhibit arbitrary degrees of long memory via appropriate definition of the model regimes.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Kapetanios, George, 2006. "Nonlinear autoregressive models and long memory," Economics Letters, Elsevier, vol. 91(3), pages 360-368, June.
  • Handle: RePEc:eee:ecolet:v:91:y:2006:i:3:p:360-368
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1765(05)00413-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Davidson, James & Sibbertsen, Philipp, 2005. "Generating schemes for long memory processes: regimes, aggregation and linearity," Journal of Econometrics, Elsevier, vol. 128(2), pages 253-282, October.
    2. Tweedie, Richard L., 1975. "Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space," Stochastic Processes and their Applications, Elsevier, vol. 3(4), pages 385-403, October.
    3. van Dijk, Dick & Franses, Philip Hans & Paap, Richard, 2002. "A nonlinear long memory model, with an application to US unemployment," Journal of Econometrics, Elsevier, vol. 110(2), pages 135-165, October.
    4. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    5. Michael Falk, 1989. "A note on uniform asymptotic normality of intermediate order statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 41(1), pages 19-29, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kapetanios, George, 2006. "Nonlinear autoregressive models and long memory," Economics Letters, Elsevier, vol. 91(3), pages 360-368, June.
    2. Richard T. Baillie & George Kapetanios, 2006. "Nonlinear Models with Strongly Dependent Processes and Applications to Forward Premia and Real Exchange Rates," Working Papers 570, Queen Mary University of London, School of Economics and Finance.
    3. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    4. Baillie, Richard T. & Kapetanios, George, 2007. "Testing for Neglected Nonlinearity in Long-Memory Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 447-461, October.
    5. Baillie, Richard T. & Kapetanios, George, 2007. "Testing for Neglected Nonlinearity in Long-Memory Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 447-461, October.
    6. Kuswanto, Heri & Sibbertsen, Philipp, 2009. "Testing for Long Memory Against ESTAR Nonlinearities," Hannover Economic Papers (HEP) dp-427, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    7. Aaron D. Smallwood, 2016. "A Monte Carlo Investigation of Unit Root Tests and Long Memory in Detecting Mean Reversion in I(0) Regime Switching, Structural Break, and Nonlinear Data," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 986-1012, June.
    8. Baillie, Richard T. & Kapetanios, George, 2008. "Nonlinear models for strongly dependent processes with financial applications," Journal of Econometrics, Elsevier, vol. 147(1), pages 60-71, November.
    9. Eric Hillebrand & Marcelo Cunha Medeiros, 2010. "Asymmetries, breaks, and long-range dependence: An estimation framework for daily realized volatility," Textos para discussão 578, Department of Economics PUC-Rio (Brazil).
    10. Lahiani, A. & Scaillet, O., 2009. "Testing for threshold effect in ARFIMA models: Application to US unemployment rate data," International Journal of Forecasting, Elsevier, vol. 25(2), pages 418-428.
    11. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    12. Eric Hillebrand & Marcelo C. Medeiros, 2016. "Nonlinearity, Breaks, and Long-Range Dependence in Time-Series Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 23-41, January.
    13. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is What? A Simple Time-Domain Test of Long-memory vs. Structural Breaks," Working Papers 258, Barcelona School of Economics.
    14. Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2018. "A simple test on structural change in long-memory time series," Economics Letters, Elsevier, vol. 163(C), pages 90-94.
    15. Caporale, Guglielmo Maria & Gil-Alana, Luis A., 2008. "Modelling the US, UK and Japanese unemployment rates: Fractional integration and structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4998-5013, July.
    16. Luis Alberiko & OlaOluwa S. Yaya & Olarenwaju I. Shittu, 2015. "Fractional integration and asymmetric volatility in european, asian and american bull and bear markets. Applications to high frequency stock data," NCID Working Papers 07/2015, Navarra Center for International Development, University of Navarra.
    17. Laura Mayoral, 2003. "Further Evidence on the Uncertain (Fractional) Unit Root in Real GNP," Working Papers 82, Barcelona School of Economics.
    18. Chevillon, Guillaume & Mavroeidis, Sophocles, 2011. "Learning generates Long Memory," ESSEC Working Papers WP1113, ESSEC Research Center, ESSEC Business School.
    19. Leipus, Remigijus & Paulauskas, Vygantas & Surgailis, Donatas, 2005. "Renewal regime switching and stable limit laws," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 299-327.
    20. Matei Demetrescu & Mehdi Hosseinkouchack, 2022. "Autoregressive spectral estimates under ignored changes in the mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 329-340, March.

    More about this item

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:91:y:2006:i:3:p:360-368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.