IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v237y2024ics0165176524001368.html
   My bibliography  Save this article

Construction and analysis of uncertainty indices based on multilingual text representations

Author

Listed:
  • Naboka-Krell, Viktoriia

Abstract

The work by Baker et al. (2016), who propose a dictionary based method and estimate the level of economic policy uncertainty (EPU) based on the occurrence of specific terms in ten leading newspapers in the USA, is among the first ones to detect the potential of text data in economic research. Following this line of research, this paper proposes automated approaches to construction of EPU indices for different countries based on newspapers’ texts. Multilingual fastText word embeddings, (S)BERT embeddings, and a novel multilingual topic modeling approach are used to construct EPU indices for Germany, Russia, and Ukraine. It is shown that constructed EPU indices based on multilingual word embeddings are Granger causal to the economic activity in all of the considered countries.

Suggested Citation

  • Naboka-Krell, Viktoriia, 2024. "Construction and analysis of uncertainty indices based on multilingual text representations," Economics Letters, Elsevier, vol. 237(C).
  • Handle: RePEc:eee:ecolet:v:237:y:2024:i:c:s0165176524001368
    DOI: 10.1016/j.econlet.2024.111653
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176524001368
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2024.111653?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Fangzhou, 2020. "Wasserstein Index Generation Model: Automatic generation of time-series index with application to Economic Policy Uncertainty," Economics Letters, Elsevier, vol. 186(C).
    2. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    3. Ghirelli, Corinna & Pérez, Javier J. & Urtasun, Alberto, 2019. "A new economic policy uncertainty index for Spain," Economics Letters, Elsevier, vol. 182(C), pages 64-67.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fangzhou Xie, 2020. "Pruned Wasserstein Index Generation Model and wigpy Package," Papers 2004.00999, arXiv.org, revised Jul 2020.
    2. Viktoriia Naboka-Krell, 2023. "Construction and Analysis of Uncertainty Indices based on Multilingual Text Representations," MAGKS Papers on Economics 202310, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    3. Marina Diakonova & Luis Molina & Hannes Mueller & Javier J. Pérez & Cristopher Rauh, 2022. "The information content of conflict, social unrest and policy uncertainty measures for macroeconomic forecasting," Working Papers 2232, Banco de España.
    4. Mueller, Hannes & Garcia-Uribe, Sandra & Sanz, Carlos, 2020. "Economic Uncertainty and Divisive Politics: Evidence from the "dos Españas"," CEPR Discussion Papers 15479, C.E.P.R. Discussion Papers.
    5. Boungou, Whelsy & Mawusi, Charles, 2022. "The impact of economic policy uncertainty on banks' non-interest income activities," International Economics, Elsevier, vol. 169(C), pages 89-97.
    6. Anna Matzner & Birgit Meyer & Harald Oberhofer, 2023. "Trade in times of uncertainty," The World Economy, Wiley Blackwell, vol. 46(9), pages 2564-2597, September.
    7. Bhanu Pratap & Nalin Priyaranjan, 2023. "Macroeconomic effects of uncertainty: a Google trends-based analysis for India," Empirical Economics, Springer, vol. 65(4), pages 1599-1625, October.
    8. Michael Ryan, 2020. "A Narrative Approach to Creating Instruments with Unstructured and Voluminous Text: An Application to Policy Uncertainty," Working Papers in Economics 20/10, University of Waikato.
    9. Whelsy Boungou & Charles Mawusi, 2021. "Economic Policy Uncertainty and Banks' Interest Income: Empirical Evidence from an International Panel Dataset," Economics Bulletin, AccessEcon, vol. 41(3), pages 2003-2011.
    10. Erik Andres-Escayola & Corinna Ghirelli & Luis Molina & Javier J. Pérez & Elena Vidal, 2022. "Using newspapers for textual indicators: which and how many?," Working Papers 2235, Banco de España.
    11. Chen, Chung-Chi & Huang, Yu-Lieh & Yang, Fang, 2024. "Semantics matter: An empirical study on economic policy uncertainty index," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 1286-1302.
    12. Gillmann, Niels & Kim, Alisa, 2021. "Quantification of Economic Uncertainty: a deep learning approach," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242421, Verein für Socialpolitik / German Economic Association.
    13. Ivana Lolić & Petar Sorić & Marija Logarušić, 2022. "Economic Policy Uncertainty Index Meets Ensemble Learning," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 401-437, August.
    14. Catalina Bolancé & Carlos Alberto Acuña & Salvador Torra, 2022. "Non-Normal Market Losses and Spatial Dependence Using Uncertainty Indices," Mathematics, MDPI, vol. 10(8), pages 1-23, April.
    15. Roberto Pascual, 2021. "Do analysts forecast differently in periods of uncertainty? An empirical analysis of target prices for Spanish banks," Working Papers 2144, Banco de España.
    16. Azevedo, Alcino & Colak, Gonul & El Kalak, Izidin & Tunaru, Radu, 2024. "The timing of voluntary delisting," Journal of Financial Economics, Elsevier, vol. 155(C).
    17. Li, Xiang & Su, Dan, 2020. "How does economic policy uncertainty affect corporate debt maturity?," IWH Discussion Papers 6/2020, Halle Institute for Economic Research (IWH).
    18. Claveria, Oscar, 2022. "Global economic uncertainty and suicide: Worldwide evidence," Social Science & Medicine, Elsevier, vol. 305(C).
    19. Donadelli, Michael & Gufler, Ivan & Pellizzari, Paolo, 2020. "The macro and asset pricing implications of rising Italian uncertainty: Evidence from a novel news-based macroeconomic policy uncertainty index," Economics Letters, Elsevier, vol. 197(C).
    20. Morão, Hugo, 2024. "An economic policy uncertainty index for Portugal," International Economics, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:237:y:2024:i:c:s0165176524001368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.