A machine learning approach to construct quarterly data on intangible investment for Eurozone
Author
Abstract
Suggested Citation
DOI: 10.1016/j.econlet.2023.111307
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- M. Ayhan Kose & Christopher Otrok & Eswar Prasad, 2012.
"Global Business Cycles: Convergence Or Decoupling?,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(2), pages 511-538, May.
- Kose, M. Ayhan & Otrok, Christopher M. & Prasad, Eswar S., 2008. "Global business cycles: convergence or decoupling?," Discussion Paper Series 1: Economic Studies 2008,17, Deutsche Bundesbank.
- Kose, M. Ayhan & Otrok, Christopher & Prasad, Eswar, 2008. "Global Business Cycles: Convergence or Decoupling?," IZA Discussion Papers 3442, Institute of Labor Economics (IZA).
- Mr. Ayhan Kose & Mr. Eswar S Prasad & Mr. Christopher Otrok, 2008. "Global Business Cycles: Convergence or Decoupling?," IMF Working Papers 2008/143, International Monetary Fund.
- M. Ayhan Kose & Christopher Otrok & Eswar S. Prasad, 2008. "Global Business Cycles: Convergence or Decoupling?," NBER Working Papers 14292, National Bureau of Economic Research, Inc.
- Carol Corrado & Jonathan Haskel & Cecilia Jona-Lasinio & Massimiliano Iommi, 2022. "Intangible Capital and Modern Economies," Journal of Economic Perspectives, American Economic Association, vol. 36(3), pages 3-28, Summer.
- Berger, Tino & Everaert, Gerdie & Pozzi, Lorenzo, 2021. "Testing for international business cycles: A multilevel factor model with stochastic factor selection," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
- Corrado, Carol & Haskel, Jonathan & Jona-Lasinio, Cecilia & Iommi, Massimiliano, 2016. "Intangible investment in the EU and US before and since the Great Recession and its contribution to productivity growth," EIB Working Papers 2016/08, European Investment Bank (EIB).
- Roberto S. Mariano & Yasutomo Murasawa, 2010. "A Coincident Index, Common Factors, and Monthly Real GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(1), pages 27-46, February.
- Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
- Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
- Fiorito, Riccardo & Kollintzas, Tryphon, 1994.
"Stylized facts of business cycles in the G7 from a real business cycles perspective,"
European Economic Review, Elsevier, vol. 38(2), pages 235-269, February.
- Fiorito, Riccardo & Kollintzas, Tryphon, 1992. "Stylized Facts of Business Cycles in the G7 from a Real Business Cycles Perspective," CEPR Discussion Papers 681, C.E.P.R. Discussion Papers.
- Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Claudia Foroni & Massimiliano Marcellino, 2013.
"A survey of econometric methods for mixed-frequency data,"
Working Paper
2013/06, Norges Bank.
- Claudia Foroni & Massimiliano Marcellino, 2013. "A survey of econometric methods for mixed-frequency data," Economics Working Papers ECO2013/02, European University Institute.
- Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72, September.
- Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
- Boriss Siliverstovs, 2017.
"Short-term forecasting with mixed-frequency data: a MIDASSO approach,"
Applied Economics, Taylor & Francis Journals, vol. 49(13), pages 1326-1343, March.
- Boriss Siliverstovs, 2015. "Short-term forecasting with mixed-frequency data: A MIDASSO approach," KOF Working papers 15-375, KOF Swiss Economic Institute, ETH Zurich.
- Bjørn Eraker & Ching Wai (Jeremy) Chiu & Andrew T. Foerster & Tae Bong Kim & Hernán D. Seoane, 2015.
"Bayesian Mixed Frequency VARs,"
Journal of Financial Econometrics, Oxford University Press, vol. 13(3), pages 698-721.
- Ching Wai Chiu & Bjorn Eraker & Andrew T. Foerster & Tae Bong Kim & Hernan D. Seoane, 2011. "Estimating VAR's sampled at mixed or irregular spaced frequencies : a Bayesian approach," Research Working Paper RWP 11-11, Federal Reserve Bank of Kansas City.
- Bec, Frédérique & Mogliani, Matteo, 2015.
"Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.
- Frédérique Bec & Matteo Mogliani, 2013. "Nowcasting French GDP in Real-Time from Survey Opinions : Information or Forecast Combinations ?," Working Papers 2013-21, Center for Research in Economics and Statistics.
- Bec, F. & Mogliani, M., 2013. "Nowcasting French GDP in Real-Time from Survey Opinions: Information or Forecast Combinations?," Working papers 436, Banque de France.
- Dorji, Karma Minjur Phuntsho, 2024. "Exploring Nowcasting Techniques for Real-Time GDP Estimation in Bhutan," MPRA Paper 121380, University Library of Munich, Germany, revised 30 Jun 2024.
- Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
- Nuttanan Wichitaksorn, 2020. "Analyzing and Forecasting Thai Macroeconomic Data using Mixed-Frequency Approach," PIER Discussion Papers 146, Puey Ungphakorn Institute for Economic Research.
- Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
- Heiner Mikosch & Laura Solanko, 2019. "Forecasting Quarterly Russian GDP Growth with Mixed-Frequency Data," Russian Journal of Money and Finance, Bank of Russia, vol. 78(1), pages 19-35, March.
- Ankargren Sebastian & Unosson Måns & Yang Yukai, 2020.
"A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior,"
Journal of Time Series Econometrics, De Gruyter, vol. 12(2), pages 1-41, July.
- Ankargren Sebastian & Unosson Måns & Yang Yukai, 2020. "A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior," Journal of Time Series Econometrics, De Gruyter, vol. 12(2), pages 1-41, July.
- Sebastian Ankargren & M{aa}ns Unosson & Yukai Yang, 2019. "A Flexible Mixed-Frequency Vector Autoregression with a Steady-State Prior," Papers 1911.09151, arXiv.org.
- Michal Franta & David Havrlant & Marek Rusnák, 2016.
"Forecasting Czech GDP Using Mixed-Frequency Data Models,"
Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 12(2), pages 165-185, December.
- Michal Franta & David Havrlant & Marek Rusnak, 2014. "Forecasting Czech GDP Using Mixed-Frequency Data Models," Working Papers 2014/08, Czech National Bank.
- Raffaele Mattera & Michelangelo Misuraca & Maria Spano & Germana Scepi, 2023. "Mixed frequency composite indicators for measuring public sentiment in the EU," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(3), pages 2357-2382, June.
- Kenichiro McAlinn, 2021. "Mixed‐frequency Bayesian predictive synthesis for economic nowcasting," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1143-1163, November.
- Stefan Neuwirth, 2017. "Time-varying mixed frequency forecasting: A real-time experiment," KOF Working papers 17-430, KOF Swiss Economic Institute, ETH Zurich.
- Mariano, Roberto S. & Ozmucur, Suleyman, 2015. "High-Mixed-Frequency Dynamic Latent Factor Forecasting Models for GDP in the Philippines/Modelos de factores dinámicos latentes con datos mixtos de alta frecuencia aplicados a la predicción del PIB en," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 33, pages 451-462, Mayo.
- Jansen, W. Jos & Jin, Xiaowen & de Winter, Jasper M., 2016.
"Forecasting and nowcasting real GDP: Comparing statistical models and subjective forecasts,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 411-436.
- Jos Jansen, W. & Jin, Xiaowen & Winter, Jasper M. de, 2016. "Forecasting and nowcasting real GDP: Comparing statistical models and subjective forecasts," Munich Reprints in Economics 43488, University of Munich, Department of Economics.
- Xu, Qifa & Zhuo, Xingxuan & Jiang, Cuixia & Liu, Xi & Liu, Yezheng, 2018. "Group penalized unrestricted mixed data sampling model with application to forecasting US GDP growth," Economic Modelling, Elsevier, vol. 75(C), pages 221-236.
More about this item
Keywords
Machine learning; Intangible investment; Factor model; Business cycles;All these keywords.
JEL classification:
- E01 - Macroeconomics and Monetary Economics - - General - - - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts
- E22 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Investment; Capital; Intangible Capital; Capacity
- E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
- C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other
- C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:231:y:2023:i:c:s0165176523003324. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.