IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v205y2021ics0165176521002408.html
   My bibliography  Save this article

Lorenz optimality for sequencing problems with welfare bounds

Author

Listed:
  • Banerjee, Sreoshi
  • Mitra, Manipushpak

Abstract

In the sequencing context, we explore the possibility of designing mechanisms which uphold the notion of justness and safeguard an agent’s individual interest. Every agent is guaranteed a minimum level of utility by imposing the generalized minimum welfare bound. Our main result shows that the constrained egalitarian mechanism is Lorenz optimal in the class of mechanisms that are feasible and satisfy the generalized minimum welfare bound.

Suggested Citation

  • Banerjee, Sreoshi & Mitra, Manipushpak, 2021. "Lorenz optimality for sequencing problems with welfare bounds," Economics Letters, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:ecolet:v:205:y:2021:i:c:s0165176521002408
    DOI: 10.1016/j.econlet.2021.109963
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176521002408
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2021.109963?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Banerjee, Sreoshi & De, Parikshit & Mitra, Manipushpak, 2020. "A welfarist approach to sequencing problems with incentives," MPRA Paper 107188, University Library of Munich, Germany.
    2. Dutta, Bhaskar & Ray, Debraj, 1989. "A Concept of Egalitarianism under Participation Constraints," Econometrica, Econometric Society, vol. 57(3), pages 615-635, May.
    3. Dutta, Bhaskar & Ray, Debraj, 1991. "Constrained egalitarian allocations," Games and Economic Behavior, Elsevier, vol. 3(4), pages 403-422, November.
    4. Chun, Youngsub & Mitra, Manipushpak & Mutuswami, Suresh, 2019. "Egalitarianism in the queueing problem," Journal of Mathematical Economics, Elsevier, vol. 81(C), pages 48-56.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brânzei, R. & Dimitrov, D.A. & Tijs, S.H., 2004. "The Equal Split-Off Set for Cooperative Games," Discussion Paper 2004-110, Tilburg University, Center for Economic Research.
    2. Sánchez-Soriano, J. & Brânzei, R. & Llorca, N. & Tijs, S.H., 2010. "A Technical Note on Lorenz Dominance in Cooperative Games," Other publications TiSEM 8221017c-5ccb-4f86-a944-e, Tilburg University, School of Economics and Management.
    3. Klijn, F. & Slikker, M. & Tijs, S.H. & Zarzuelo, J., 1998. "Characterizations of the Egalitarian Solution for Convex Games," Discussion Paper 1998-33, Tilburg University, Center for Economic Research.
    4. Francesc Llerena & Cori Vilella, 2013. "An axiomatic characterization of the strong constrained egalitarian solution," Economics Bulletin, AccessEcon, vol. 33(2), pages 1438-1445.
    5. Klijn, Flip & Slikker, Marco & Tijs, Stef & Zarzuelo, Jose, 2000. "The egalitarian solution for convex games: some characterizations," Mathematical Social Sciences, Elsevier, vol. 40(1), pages 111-121, July.
    6. Dietzenbacher, Bas, 2019. "The Procedural Egalitarian Solution and Egalitarian Stable Games," Other publications TiSEM 6caea8c0-1dcd-4038-88da-b, Tilburg University, School of Economics and Management.
    7. Javier Arin & Jeroen Kuipers & Dries Vermeulen, 2008. "An axiomatic approach to egalitarianism in TU-games," International Journal of Game Theory, Springer;Game Theory Society, vol. 37(4), pages 565-580, December.
    8. R. Branzei & E. Gutiérrez & N. Llorca & J. Sánchez-Soriano, 2021. "Does it make sense to analyse a two-sided market as a multi-choice game?," Annals of Operations Research, Springer, vol. 301(1), pages 17-40, June.
    9. Vincent Iehlé, 2015. "The lattice structure of the S-Lorenz core," Theory and Decision, Springer, vol. 78(1), pages 141-151, January.
    10. R. Branzei & N. Llorca & J. Sánchez-Soriano & S. Tijs, 2014. "A constrained egalitarian solution for convex multi-choice games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 860-874, October.
    11. Francesc Llerena & Carles Rafels & Cori Vilella, 2008. "A simple procedure for computing strong constrained egalitarian allocations," Working Papers 327, Barcelona School of Economics.
    12. Dietzenbacher, Bas, 2020. "Monotonicity and Egalitarianism (revision of CentER DP 2019-007)," Other publications TiSEM 295f156e-91ad-4177-b61a-1, Tilburg University, School of Economics and Management.
    13. Geoffroy de Clippel & Kareen Rozen, 2022. "Fairness through the Lens of Cooperative Game Theory: An Experimental Approach," American Economic Journal: Microeconomics, American Economic Association, vol. 14(3), pages 810-836, August.
    14. Sánchez-Soriano, J. & Brânzei, R. & Llorca, N. & Tijs, S.H., 2010. "A Technical Note on Lorenz Dominance in Cooperative Games," Discussion Paper 2010-101, Tilburg University, Center for Economic Research.
    15. Takafumi Otsuka, 2020. "Egalitarian solution for games with discrete side payment," Papers 2003.10059, arXiv.org.
    16. Francesc Llerena & Llúcia Mauri, 2016. "Reduced games and egalitarian solutions," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(4), pages 1053-1069, November.
    17. Brânzei, R. & Llorca, N. & Sánchez-Soriano, J. & Tijs, S.H., 2007. "Egalitarianism in Multi-Choice Games," Discussion Paper 2007-55, Tilburg University, Center for Economic Research.
    18. Ray, Debraj & Vohra, Rajiv, 1997. "Equilibrium Binding Agreements," Journal of Economic Theory, Elsevier, vol. 73(1), pages 30-78, March.
    19. Arin, Javier & Kuipers, Jeroen & Vermeulen, Dries, 2003. "Some characterizations of egalitarian solutions on classes of TU-games," Mathematical Social Sciences, Elsevier, vol. 46(3), pages 327-345, December.

    More about this item

    Keywords

    Sequencing; Feasibility; Generalized minimum welfare bound; Lorenz criterion; Constrained egalitarianism;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:205:y:2021:i:c:s0165176521002408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.