IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v205y2021ics0165176521002019.html
   My bibliography  Save this article

Modelling corporate bank accounts

Author

Listed:
  • Fry, John
  • Griguta, Vlad-Marius
  • Gerber, Luciano
  • Slater-Petty, Helen
  • Crockett, Keeley

Abstract

We discuss the modelling of corporate bank accounts using a proprietary dataset. We thus offer a principled treatment of a genuine industrial problem. The corporate bank accounts in our study constitute spare, irregularly-spaced time series that may take both positive and negative values. We thus builds on previous models where the underlying is real-valued. We describe an intra-monthly effect identified by practitioners whereby account uncertainty is typically lowest at the beginning and end of each month and highest in the middle. However, our theory also allows for the opposite effect to occur. In-sample applications demonstrate the statistical significance of the hypothesised monthly effect. Out-of-sample forecasting applications offer a 9% improvement compared to a standard SARIMA approach.

Suggested Citation

  • Fry, John & Griguta, Vlad-Marius & Gerber, Luciano & Slater-Petty, Helen & Crockett, Keeley, 2021. "Modelling corporate bank accounts," Economics Letters, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:ecolet:v:205:y:2021:i:c:s0165176521002019
    DOI: 10.1016/j.econlet.2021.109924
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176521002019
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2021.109924?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anna Battauz & Marzia De Donno & Alessandro Sbuelz, 2012. "Real options with a double continuation region," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 465-475, April.
    2. John Fry & Matt Burke, 2020. "An options-pricing approach to election prediction," Quantitative Finance, Taylor & Francis Journals, vol. 20(10), pages 1583-1589, October.
    3. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169.
    4. Nassim Nicholas Taleb, 2018. "Election predictions as martingales: an arbitrage approach," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 1-5, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alan K. Karaev & Oksana S. Gorlova & Vadim V. Ponkratov & Marina L. Sedova & Nataliya S. Shmigol & Margarita L. Vasyunina, 2022. "A Comparative Analysis of the Choice of Mother Wavelet Functions Affecting the Accuracy of Forecasts of Daily Balances in the Treasury Single Account," Economies, MDPI, vol. 10(9), pages 1-27, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabrizio Pomponio & Frédéric Abergel, 2013. "Multiple-limit trades : empirical facts and application to lead-lag measures," Post-Print hal-00745317, HAL.
    2. Lubashevsky, Ihor & Friedrich, Rudolf & Heuer, Andreas & Ushakov, Andrey, 2009. "Generalized superstatistics of nonequilibrium Markovian systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4535-4550.
    3. Assaf Almog & Ferry Besamusca & Mel MacMahon & Diego Garlaschelli, 2015. "Mesoscopic Community Structure of Financial Markets Revealed by Price and Sign Fluctuations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-16, July.
    4. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    5. S. Reimann, 2007. "Price dynamics from a simple multiplicative random process model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 56(4), pages 381-394, April.
    6. Dror Y. Kenett & Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2015. "Partial correlation analysis: applications for financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 569-578, April.
    7. W.-S. Jung & F. Z. Wang & S. Havlin & T. Kaizoji & H.-T. Moon & H. E. Stanley, 2008. "Volatility return intervals analysis of the Japanese market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 62(1), pages 113-119, March.
    8. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    9. Xiao, Di & Wang, Jun, 2021. "Attitude interaction for financial price behaviours by contact system with small-world network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    10. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    11. V. Alfi & L. Pietronero & A. Zaccaria, 2008. "Minimal Agent Based Model For The Origin And Self-Organization Of Stylized Facts In Financial Markets," Papers 0807.1888, arXiv.org.
    12. Denis Phan, 2006. "Discrete Choices under Social Influence:Generic Properties," Post-Print halshs-00105857, HAL.
    13. Slanina, František, 2010. "A contribution to the systematics of stochastic volatility models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3230-3239.
    14. Dibeh, Ghassan, 2007. "Contagion effects in a chartist–fundamentalist model with time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 52-57.
    15. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    16. Till Massing, 2018. "Simulation of Student–Lévy processes using series representations," Computational Statistics, Springer, vol. 33(4), pages 1649-1685, December.
    17. Guevara Hidalgo, Esteban, 2017. "Bin size independence in intra-day seasonalities for relative prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 722-732.
    18. F. Wang & P. Weber & K. Yamasaki & S. Havlin & H. E. Stanley, 2007. "Statistical regularities in the return intervals of volatility," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 123-133, January.
    19. Anufriev, Mikhail & Bottazzi, Giulio & Marsili, Matteo & Pin, Paolo, 2012. "Excess covariance and dynamic instability in a multi-asset model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1142-1161.
    20. X. F. Jiang & T. T. Chen & B. Zheng, 2013. "Time-reversal asymmetry in financial systems," Papers 1308.0669, arXiv.org.

    More about this item

    Keywords

    Corporate bank accounts; Fin Tech; Forecasting applications; Machine learning;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • G1 - Financial Economics - - General Financial Markets
    • G3 - Financial Economics - - Corporate Finance and Governance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:205:y:2021:i:c:s0165176521002019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.