IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v186y2020ics0165176519304112.html
   My bibliography  Save this article

A new consistency proof for HAC variance estimators

Author

Listed:
  • Davidson, James

Abstract

A consistency theorem for kernel HAC variance estimators was originally proposed by Hansen (1992) but corrected under stronger conditions on the order of existing moments by de Jong (2000). The present result restores and also generalizes the conditions of Hansen’s result by assuming the process to be adapted to a filtration. It allows for nonstationarity, and dependence is modelled by the assumption of near-epoch dependence on a mixing process.

Suggested Citation

  • Davidson, James, 2020. "A new consistency proof for HAC variance estimators," Economics Letters, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:ecolet:v:186:y:2020:i:c:s0165176519304112
    DOI: 10.1016/j.econlet.2019.108811
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176519304112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2019.108811?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Davidson & Robert M. De Jong, 2002. "Consistency of kernel variance estimators for sums of semiparametric linear processes," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 160-175, June.
    2. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    3. Hansen, Bruce E, 1992. "Consistent Covariance Matrix Estimation for Dependent Heterogeneous Processes," Econometrica, Econometric Society, vol. 60(4), pages 967-972, July.
    4. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    5. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    6. Robert M. De Jong & James Davidson, 2000. "Consistency of Kernel Estimators of Heteroscedastic and Autocorrelated Covariance Matrices," Econometrica, Econometric Society, vol. 68(2), pages 407-424, March.
    7. de Jong, Robert M., 1997. "Central Limit Theorems for Dependent Heterogeneous Random Variables," Econometric Theory, Cambridge University Press, vol. 13(3), pages 353-367, June.
    8. Jansson, Michael, 2002. "Consistent Covariance Matrix Estimation For Linear Processes," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1449-1459, December.
    9. de Jong, Robert M., 2000. "A Strong Consistency Proof For Heteroskedasticity And Autocorrelation Consistent Covariance Matrix Estimators," Econometric Theory, Cambridge University Press, vol. 16(2), pages 262-268, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bolko, Anine E. & Christensen, Kim & Pakkanen, Mikko S. & Veliyev, Bezirgen, 2023. "A GMM approach to estimate the roughness of stochastic volatility," Journal of Econometrics, Elsevier, vol. 235(2), pages 745-778.
    2. Alessio Sancetta, 2023. "Intraday Trades Profile Estimation: An Intensity Approach," Journal of Financial Econometrics, Oxford University Press, vol. 21(3), pages 651-677.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Isaac Miller, 2010. "Cointegrating regressions with messy regressors and an application to mixed‐frequency series," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(4), pages 255-277, July.
    2. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    3. Li, Jia & Liao, Zhipeng, 2020. "Uniform nonparametric inference for time series," Journal of Econometrics, Elsevier, vol. 219(1), pages 38-51.
    4. Hartigan, Luke, 2018. "Alternative HAC covariance matrix estimators with improved finite sample properties," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 55-73.
    5. Cheol-Keun Cho & Timothy J. Vogelsang, 2016. "Fixed- b Inference for Testing Structural Change in a Time Series Regression," Econometrics, MDPI, vol. 5(1), pages 1-26, December.
    6. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    7. Michael Jansson & Marcelo J. Moreira, 2006. "Optimal Inference in Regression Models with Nearly Integrated Regressors," Econometrica, Econometric Society, vol. 74(3), pages 681-714, May.
    8. Yasutomo Murasawa, 2009. "Do coincident indicators have one-factor structure?," Empirical Economics, Springer, vol. 36(2), pages 339-365, May.
    9. Miller J. Isaac, 2010. "A Nonlinear IV Likelihood-Based Rank Test for Multivariate Time Series and Long Panels," Journal of Time Series Econometrics, De Gruyter, vol. 2(1), pages 1-38, September.
    10. Peter C.B. Phillips & Yixiao Sun & Sainan Jin, 2005. "Improved HAR Inference," Cowles Foundation Discussion Papers 1513, Cowles Foundation for Research in Economics, Yale University.
    11. Cho, Cheol-Keun & Amsler, Christine & Schmidt, Peter, 2015. "A test of the null of integer integration against the alternative of fractional integration," Journal of Econometrics, Elsevier, vol. 187(1), pages 217-237.
    12. J. Isaac Miller, 2007. "Cointegrating Regressions with Messy Regressors: Missingness, Mixed Frequency, and Measurement Error," Working Papers 0722, Department of Economics, University of Missouri, revised 15 Apr 2009.
    13. de Jong, Robert M., 2002. "Nonlinear minimization estimators in the presence of cointegrating relations," Journal of Econometrics, Elsevier, vol. 110(2), pages 241-259, October.
    14. Lu, Ye & Park, Joon Y., 2019. "Estimation of longrun variance of continuous time stochastic process using discrete sample," Journal of Econometrics, Elsevier, vol. 210(2), pages 236-267.
    15. Giuseppe Cavaliere, 2002. "Bounded integrated processes and unit root tests," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 11(1), pages 41-69, February.
    16. Francq, Christian & Zakoïan, Jean-Michel, 2007. "HAC estimation and strong linearity testing in weak ARMA models," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 114-144, January.
    17. Abhimanyu Gupta & Myung Hwan Seo, 2023. "Robust Inference on Infinite and Growing Dimensional Time‐Series Regression," Econometrica, Econometric Society, vol. 91(4), pages 1333-1361, July.
    18. Sun, Yixiao X & Phillips, Peter C. B. & Jin, Sainan, 2005. "Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing∗," University of California at San Diego, Economics Working Paper Series qt16b3j2hd, Department of Economics, UC San Diego.
    19. Firmin Doko Tchatoka & Qazi Haque, 2023. "On bootstrapping tests of equal forecast accuracy for nested models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1844-1864, November.
    20. Kuan, Chung-Ming & Hsieh, Yu-Wei, 2008. "Improved HAC covariance matrix estimation based on forecast errors," Economics Letters, Elsevier, vol. 99(1), pages 89-92, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:186:y:2020:i:c:s0165176519304112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.