IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v178y2019icp5-7.html
   My bibliography  Save this article

On CCE estimation of factor-augmented models when regressors are not linear in the factors

Author

Listed:
  • De Vos, Ignace
  • Westerlund, Joakim

Abstract

In empirical research it is often of interest to include non-linear functions of the explanatory variables, such as squares or interactions, in the specification. A popular technique to estimate such models in the presence of common factors is the Common Correlated Effects (CCE) methodology. However, this approach assumes that the regressors are linear in the factors, which is not the case if variables enter non-linearly. In this note we show how CCE should be implemented when some regressors violate the linear factor model assumption.

Suggested Citation

  • De Vos, Ignace & Westerlund, Joakim, 2019. "On CCE estimation of factor-augmented models when regressors are not linear in the factors," Economics Letters, Elsevier, vol. 178(C), pages 5-7.
  • Handle: RePEc:eee:ecolet:v:178:y:2019:i:c:p:5-7
    DOI: 10.1016/j.econlet.2019.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176519300382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2019.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    2. Eberhardt, Markus & Presbitero, Andrea F., 2015. "Public debt and growth: Heterogeneity and non-linearity," Journal of International Economics, Elsevier, vol. 97(1), pages 45-58.
    3. Robertson, Donald & Sarafidis, Vasilis, 2015. "IV estimation of panels with factor residuals," Journal of Econometrics, Elsevier, vol. 185(2), pages 526-541.
    4. Ahn, Seung C. & Lee, Young H. & Schmidt, Peter, 2013. "Panel data models with multiple time-varying individual effects," Journal of Econometrics, Elsevier, vol. 174(1), pages 1-14.
    5. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    6. Ahn, Seung Chan & Hoon Lee, Young & Schmidt, Peter, 2001. "GMM estimation of linear panel data models with time-varying individual effects," Journal of Econometrics, Elsevier, vol. 101(2), pages 219-255, April.
    7. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ulucak, Recep & Koçak, Emrah & Erdoğan, Seyfettin & Kassouri, Yacouba, 2020. "Investigating the non-linear effects of globalization on material consumption in the EU countries: Evidence from PSTR estimation," Resources Policy, Elsevier, vol. 67(C).
    2. Philip Kerner & Torben Klarl & Tobias Wendler, 2021. "Green Technologies, Environmental Policy and Regional Growth," Bremen Papers on Economics & Innovation 2104, University of Bremen, Faculty of Business Studies and Economics.
    3. Stauskas, Ovidijus & De Vos, Ignace, 2024. "Handling Distinct Correlated Effects with CCE," MPRA Paper 120194, University Library of Munich, Germany.
    4. Artūras Juodis, 2022. "A regularization approach to common correlated effects estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 788-810, June.
    5. Recep Ulucak & Danish & Yacouba Kassouri, 2020. "An assessment of the environmental sustainability corridor: Investigating the non‐linear effects of environmental taxation on CO2 emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 1010-1018, July.
    6. Mauro, Luciano & Pigliaru, Francesco & Carmeci, Gaetano, 2023. "Decentralization, social capital, and regional growth: The case of the Italian North-South divide," European Journal of Political Economy, Elsevier, vol. 78(C).
    7. Mohitosh Kejriwal & Xiaoxiao Li & Linh Nguyen & Evan Totty, 2024. "The efficacy of ability proxies for estimating the returns to schooling: A factor model‐based evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 3-21, January.
    8. Yan Sun & Wei Huang, 2022. "Quasi-maximum likelihood estimation of short panel data models with time-varying individual effects," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(1), pages 93-114, January.
    9. Nicholas L. Brown & Peter Schmidt & Jeffrey M. Wooldridge, 2021. "Simple Alternatives to the Common Correlated Effects Model," Papers 2112.01486, arXiv.org.
    10. De Vos, Ignace & Stauskas, Ovidijus, 2024. "Cross-section bootstrap for CCE regressions," Journal of Econometrics, Elsevier, vol. 240(1).
    11. Christis Katsouris, 2023. "Optimal Estimation Methodologies for Panel Data Regression Models," Papers 2311.03471, arXiv.org, revised Nov 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Xiaoqing & Xu, Juan & Wu, Xiangjun, 2018. "Estimation of an unbalanced panel data Tobit model with interactive effects," Journal of choice modelling, Elsevier, vol. 28(C), pages 108-123.
    2. Hugo Freeman & Martin Weidner, 2021. "Linear panel regressions with two-way unobserved heterogeneity," CeMMAP working papers CWP39/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Jörg Breitung & Philipp Hansen, 2021. "Alternative estimation approaches for the factor augmented panel data model with small T," Empirical Economics, Springer, vol. 60(1), pages 327-351, January.
    4. Callaway, Brantly & Karami, Sonia, 2023. "Treatment effects in interactive fixed effects models with a small number of time periods," Journal of Econometrics, Elsevier, vol. 233(1), pages 184-208.
    5. Freeman, Hugo & Weidner, Martin, 2023. "Linear panel regressions with two-way unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 237(1).
    6. Hugo Freeman & Martin Weidner, 2021. "Linear Panel Regressions with Two-Way Unobserved Heterogeneity," Papers 2109.11911, arXiv.org, revised Aug 2022.
    7. Joakim Westerlund, 2020. "A cross‐section average‐based principal components approach for fixed‐T panels," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 776-785, September.
    8. Hsiao, Cheng, 2018. "Panel models with interactive effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 645-673.
    9. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    10. Robertson, Donald & Sarafidis, Vasilis, 2015. "IV estimation of panels with factor residuals," Journal of Econometrics, Elsevier, vol. 185(2), pages 526-541.
    11. Laurent Gobillon & Thierry Magnac, 2016. "Regional Policy Evaluation: Interactive Fixed Effects and Synthetic Controls," The Review of Economics and Statistics, MIT Press, vol. 98(3), pages 535-551, July.
    12. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    13. G. Forchini & Bin Jiang & Bin Peng, 2015. "Consistent Estimation in Large Heterogeneous Panels with Multifactor Structure Endogeneity," Monash Econometrics and Business Statistics Working Papers 14/15, Monash University, Department of Econometrics and Business Statistics.
    14. Milda Norkuté & Vasilis Sarafidis & Takashi Yamagata, 2018. "Instrumental Variable Estimation of Dynamic Linear Panel Data Models with Defactored Regressors and a Multifactor Error Structure," ISER Discussion Paper 1019, Institute of Social and Economic Research, Osaka University.
    15. Yana Petrova & Joakim Westerlund, 2020. "Fixed effects demeaning in the presence of interactive effects in treatment effects regressions and elsewhere," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 960-964, November.
    16. G. Forchini & Bin Jiang & Bin Peng, 2015. "Common Shocks in panels with Endogenous Regressors," Monash Econometrics and Business Statistics Working Papers 8/15, Monash University, Department of Econometrics and Business Statistics.
    17. Bai, Jushan, 2024. "Likelihood approach to dynamic panel models with interactive effects," Journal of Econometrics, Elsevier, vol. 240(1).
    18. Juodis, Artūras & Karabiyik, Hande & Westerlund, Joakim, 2021. "On the robustness of the pooled CCE estimator," Journal of Econometrics, Elsevier, vol. 220(2), pages 325-348.
    19. Giovanni Forchini & Bin Jiang & Bin Peng, 2018. "TSLS and LIML Estimators in Panels with Unobserved Shocks," Econometrics, MDPI, vol. 6(2), pages 1-12, April.
    20. Georg Keilbar & Juan M. Rodriguez-Poo & Alexandra Soberon & Weining Wang, 2022. "A semiparametric approach for interactive fixed effects panel data models," Papers 2201.11482, arXiv.org, revised Mar 2023.

    More about this item

    Keywords

    CCE; Factor-augmented regression models; Non-linear regressors;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:178:y:2019:i:c:p:5-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.