IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v138y2016icp57-59.html
   My bibliography  Save this article

A simple derivation of the efficiency bound for conditional moment restriction models

Author

Listed:
  • Sueishi, Naoya

Abstract

This study gives a simple derivation of the efficiency bound for conditional moment restriction models. The Fisher information is obtained by deriving a least favorable submodel in an explicit form. The proposed method also suggests an asymptotically efficient estimator, which can be viewed as an empirical likelihood estimator for conditional moment restriction models.

Suggested Citation

  • Sueishi, Naoya, 2016. "A simple derivation of the efficiency bound for conditional moment restriction models," Economics Letters, Elsevier, vol. 138(C), pages 57-59.
  • Handle: RePEc:eee:ecolet:v:138:y:2016:i:c:p:57-59
    DOI: 10.1016/j.econlet.2015.11.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176515004942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2015.11.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jian Zhang & Irène Gijbels, 2003. "Sieve Empirical Likelihood and Extensions of the Generalized Least Squares," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(1), pages 1-24, March.
    2. Manuel A. Domínguez & Ignacio N. Lobato, 2004. "Consistent Estimation of Models Defined by Conditional Moment Restrictions," Econometrica, Econometric Society, vol. 72(5), pages 1601-1615, September.
    3. Otsu, Taisuke & Whang, Yoon-Jae, 2011. "Testing For Nonnested Conditional Moment Restrictions Via Conditional Empirical Likelihood," Econometric Theory, Cambridge University Press, vol. 27(1), pages 114-153, February.
    4. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
    5. Yuichi Kitamura & Gautam Tripathi & Hyungtaik Ahn, 2004. "Empirical Likelihood-Based Inference in Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 72(6), pages 1667-1714, November.
    6. Newey, Whitney K, 1990. "Efficient Instrumental Variables Estimation of Nonlinear Models," Econometrica, Econometric Society, vol. 58(4), pages 809-837, July.
    7. Lavergne, Pascal & Patilea, Valentin, 2013. "Smooth minimum distance estimation and testing with conditional estimating equations: Uniform in bandwidth theory," Journal of Econometrics, Elsevier, vol. 177(1), pages 47-59.
    8. Carrasco, Marine & Florens, Jean-Pierre, 2000. "Generalization Of Gmm To A Continuum Of Moment Conditions," Econometric Theory, Cambridge University Press, vol. 16(6), pages 797-834, December.
    9. Severini, Thomas A. & Tripathi, Gautam, 2001. "A simplified approach to computing efficiency bounds in semiparametric models," Journal of Econometrics, Elsevier, vol. 102(1), pages 23-66, May.
    10. Donald, Stephen G. & Imbens, Guido W. & Newey, Whitney K., 2003. "Empirical likelihood estimation and consistent tests with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 117(1), pages 55-93, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomohiro Ando & Naoya Sueishi, 2019. "On the Convergence Rate of the SCAD-Penalized Empirical Likelihood Estimator," Econometrics, MDPI, vol. 7(1), pages 1-14, March.
    2. Yaroslav Mukhin, 2018. "Sensitivity of Regular Estimators," Papers 1805.08883, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," CIRJE F-Series CIRJE-F-430, CIRJE, Faculty of Economics, University of Tokyo.
    2. Gospodinov, Nikolay & Otsu, Taisuke, 2012. "Local GMM estimation of time series models with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 170(2), pages 476-490.
    3. Kunyang Song & Feiyu Jiang & Ke Zhu, 2024. "Estimation for conditional moment models based on martingale difference divergence," Papers 2404.11092, arXiv.org.
    4. Poirier, Alexandre, 2017. "Efficient estimation in models with independence restrictions," Journal of Econometrics, Elsevier, vol. 196(1), pages 1-22.
    5. Hsu, Shih-Hsun & Kuan, Chung-Ming, 2011. "Estimation of conditional moment restrictions without assuming parameter identifiability in the implied unconditional moments," Journal of Econometrics, Elsevier, vol. 165(1), pages 87-99.
    6. Krikamol Muandet & Wittawat Jitkrittum & Jonas Kubler, 2020. "Kernel Conditional Moment Test via Maximum Moment Restriction," Papers 2002.09225, arXiv.org, revised Jun 2020.
    7. Daniel Becker & Alois Kneip & Valentin Patilea, 2021. "Semiparametric inference for partially linear regressions with Box-Cox transformation," Papers 2106.10723, arXiv.org.
    8. Lavergne, Pascal & Patilea, Valentin, 2013. "Smooth minimum distance estimation and testing with conditional estimating equations: Uniform in bandwidth theory," Journal of Econometrics, Elsevier, vol. 177(1), pages 47-59.
    9. Parente, Paulo M.D.C. & Smith, Richard J., 2017. "Tests of additional conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 200(1), pages 1-16.
    10. Otsu, Taisuke & Seo, Myung Hwan & Whang, Yoon-Jae, 2012. "Testing for non-nested conditional moment restrictions using unconditional empirical likelihood," Journal of Econometrics, Elsevier, vol. 167(2), pages 370-382.
    11. Hansen, Lars Peter, 2013. "Uncertainty Outside and Inside Economic Models," Nobel Prize in Economics documents 2013-7, Nobel Prize Committee.
    12. Menzel, Konrad, 2014. "Consistent estimation with many moment inequalities," Journal of Econometrics, Elsevier, vol. 182(2), pages 329-350.
    13. Otsu, Taisuke & Whang, Yoon-Jae, 2011. "Testing For Nonnested Conditional Moment Restrictions Via Conditional Empirical Likelihood," Econometric Theory, Cambridge University Press, vol. 27(1), pages 114-153, February.
    14. Wang, Xuexin, 2015. "A Note on Consistent Conditional Moment Tests," MPRA Paper 69005, University Library of Munich, Germany.
    15. Ai, Chunrong & Chen, Xiaohong, 2012. "The semiparametric efficiency bound for models of sequential moment restrictions containing unknown functions," Journal of Econometrics, Elsevier, vol. 170(2), pages 442-457.
    16. Laurent Davezies & Xavier D'Haultfœuille & Martin Mugnier, 2023. "Fixed‐effects binary choice models with three or more periods," Quantitative Economics, Econometric Society, vol. 14(3), pages 1105-1132, July.
    17. Fan, Jianqing & Liao, Yuan, 2012. "Endogeneity in ultrahigh dimension," MPRA Paper 38698, University Library of Munich, Germany.
    18. Xiaohong Chen & David Jacho-Chávez & Oliver Linton, 2012. "Averaging of moment condition estimators," CeMMAP working papers 26/12, Institute for Fiscal Studies.
    19. Buchinsky, Moshe & Li, Fanghua & Liao, Zhipeng, 2022. "Estimation and inference of semiparametric models using data from several sources," Journal of Econometrics, Elsevier, vol. 226(1), pages 80-103.
    20. Kotchoni, Rachidi, 2014. "The indirect continuous-GMM estimation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 464-488.

    More about this item

    Keywords

    Conditional moment restrictions; Empirical likelihood; Fisher information; Least favorable submodel;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:138:y:2016:i:c:p:57-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.