IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v133y2015icp14-18.html
   My bibliography  Save this article

A martingale decomposition of discrete Markov chains

Author

Listed:
  • Hansen, Peter Reinhard

Abstract

We consider a multivariate time series whose increments are given from a homogeneous Markov chain. We show that the martingale component of this process can be extracted by a filtering method and establish the corresponding martingale decomposition in closed-form. This representation is useful for the analysis of time series that are confined to a grid, such as financial high frequency data.

Suggested Citation

  • Hansen, Peter Reinhard, 2015. "A martingale decomposition of discrete Markov chains," Economics Letters, Elsevier, vol. 133(C), pages 14-18.
  • Handle: RePEc:eee:ecolet:v:133:y:2015:i:c:p:14-18
    DOI: 10.1016/j.econlet.2015.04.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176515001895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2015.04.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    2. Hasbrouck, Joel, 1995. "One Security, Many Markets: Determining the Contributions to Price Discovery," Journal of Finance, American Finance Association, vol. 50(4), pages 1175-1199, September.
    3. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    4. Hausman, Jerry A. & Lo, Andrew W. & MacKinlay, A. Craig, 1992. "An ordered probit analysis of transaction stock prices," Journal of Financial Economics, Elsevier, vol. 31(3), pages 319-379, June.
    5. Peter Reinhard Hansen, 2005. "Granger's representation theorem: A closed-form expression for I(1) processes," Econometrics Journal, Royal Economic Society, vol. 8(1), pages 23-38, March.
    6. Jerome Adda & Russell Cooper, 2000. "Balladurette and Juppette: A Discrete Analysis of Scrapping Subsidies," Journal of Political Economy, University of Chicago Press, vol. 108(4), pages 778-806, August.
    7. Tauchen, George, 1986. "Finite state markov-chain approximations to univariate and vector autoregressions," Economics Letters, Elsevier, vol. 20(2), pages 177-181.
    8. Cecilia Mancini, 2009. "Non‐parametric Threshold Estimation for Models with Stochastic Diffusion Coefficient and Jumps," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 270-296, June.
    9. Large, Jeremy, 2011. "Estimating quadratic variation when quoted prices change by a constant increment," Journal of Econometrics, Elsevier, vol. 160(1), pages 2-11, January.
    10. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 456-499.
    11. Peter Reinhard Hansen & Guillaume Horel, 2009. "Quadratic Variation by Markov Chains," CREATES Research Papers 2009-13, Department of Economics and Business Economics, Aarhus University.
    12. Lars Peter Hansen, 2012. "Dynamic Valuation Decomposition Within Stochastic Economies," Econometrica, Econometric Society, vol. 80(3), pages 911-967, May.
    13. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    14. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
    15. Jia Li, 2013. "Robust Estimation and Inference for Jumps in Noisy High Frequency Data: A Local‐to‐Continuity Theory for the Pre‐Averaging Method," Econometrica, Econometric Society, vol. 81(4), pages 1673-1693, July.
    16. Russell, Jeffrey R. & Engle, Robert F., 2005. "A Discrete-State Continuous-Time Model of Financial Transactions Prices and Times: The Autoregressive Conditional Multinomial-Autoregressive Conditional Duration Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 166-180, April.
    17. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Reinhard Hansen & Yiyao Luo, 2023. "Robust Estimation of Realized Correlation: New Insight about Intraday Fluctuations in Market Betas," Papers 2310.19992, arXiv.org.
    2. Bian, Siyu & Serra, Teresa & Garcia, Philip & Irwin, Scott, 2022. "New evidence on market response to public announcements in the presence of microstructure noise," European Journal of Operational Research, Elsevier, vol. 298(2), pages 785-800.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastiano Michele Zema, 2020. "Directed Acyclic Graph based Information Shares for Price Discovery," LEM Papers Series 2020/28, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    3. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    4. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    5. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2016. "Testing for heteroscedasticity in jumpy and noisy high-frequency data: A resampling approach," CREATES Research Papers 2016-27, Department of Economics and Business Economics, Aarhus University.
    6. Clinet, Simon & Potiron, Yoann, 2019. "Testing if the market microstructure noise is fully explained by the informational content of some variables from the limit order book," Journal of Econometrics, Elsevier, vol. 209(2), pages 289-337.
    7. Pierre Bajgrowicz & Olivier Scaillet & Adrien Treccani, 2016. "Jumps in High-Frequency Data: Spurious Detections, Dynamics, and News," Management Science, INFORMS, vol. 62(8), pages 2198-2217, August.
    8. Jozef Barunik & Lukas Vacha, 2015. "Realized wavelet-based estimation of integrated variance and jumps in the presence of noise," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1347-1364, August.
    9. Zema, Sebastiano Michele, 2022. "Directed acyclic graph based information shares for price discovery," Journal of Economic Dynamics and Control, Elsevier, vol. 139(C).
    10. Dumitru, Ana-Maria & Hizmeri, Rodrigo & Izzeldin, Marwan, 2019. "Forecasting the Realized Variance in the Presence of Intraday Periodicity," EconStor Preprints 193631, ZBW - Leibniz Information Centre for Economics.
    11. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    12. Christos Floros & Konstantinos Gkillas & Christoforos Konstantatos & Athanasios Tsagkanos, 2020. "Realized Measures to Explain Volatility Changes over Time," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    13. Xu, Liao & Xu, Lu & Zhao, Jing & Zhao, Yang, 2020. "Information-based trading and information propagation: Evidence from the exchange traded fund market," International Review of Financial Analysis, Elsevier, vol. 70(C).
    14. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    15. Huh, Hyeon-seung & Kim, David, 2013. "An empirical test of exogenous versus endogenous growth models for the G-7 countries," Economic Modelling, Elsevier, vol. 32(C), pages 262-272.
    16. Joseph, Kishore & Garcia, Philip & Peterson, Paul E., 2016. "Does the Boxed Beef Price Inform the Live Cattle Futures Price?," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236166, Agricultural and Applied Economics Association.
    17. Neil Shephard & Dacheng Xiu, 2012. "Econometric analysis of multivariate realised QML: efficient positive semi-definite estimators of the covariation of equity prices," Economics Series Working Papers 604, University of Oxford, Department of Economics.
    18. Chen, Yu-Lun & Xu, Ke, 2021. "The impact of RMB’s SDR inclusion on price discovery in onshore-offshore markets," Journal of Banking & Finance, Elsevier, vol. 127(C).
    19. Filip Žikeš & Jozef Baruník, 2016. "Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 185-226.
    20. Kim Christensen & Mark Podolskij & Mathias Vetter, 2009. "Bias-correcting the realized range-based variance in the presence of market microstructure noise," Finance and Stochastics, Springer, vol. 13(2), pages 239-268, April.

    More about this item

    Keywords

    Markov chain; Martingale; Beveridge–Nelson decomposition;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:133:y:2015:i:c:p:14-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.