IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v118y2013i1p243-246.html
   My bibliography  Save this article

Estimation of a local-aggregate network model with sampled networks

Author

Listed:
  • Liu, Xiaodong

Abstract

This work considers the estimation of a network model with sampled networks. Chandrasekhar and Lewis (2011) show that the estimation with sampled networks could be biased due to measurement error induced by sampling and propose a bias correction by restricting the estimation to sampled nodes to avoid measurement error in the regressors. However, measurement error may still exist in the instruments and thus induce the weak instrument problem when the sampling rate is low. For a local-aggregate model, we show that the instrument based on the outdegrees of sampled nodes is free of measurement error and thus remains informative even if the sampling rate is low. Simulation studies suggest that the 2SLS estimator with the proposed instrument works well when the sampling rate is low and the other instruments are weak.

Suggested Citation

  • Liu, Xiaodong, 2013. "Estimation of a local-aggregate network model with sampled networks," Economics Letters, Elsevier, vol. 118(1), pages 243-246.
  • Handle: RePEc:eee:ecolet:v:118:y:2013:i:1:p:243-246
    DOI: 10.1016/j.econlet.2012.10.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176512005903
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2012.10.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bramoullé, Yann & Djebbari, Habiba & Fortin, Bernard, 2009. "Identification of peer effects through social networks," Journal of Econometrics, Elsevier, vol. 150(1), pages 41-55, May.
    2. Banerjee, Abhijit & Jackson, Matthew O. & Duflo, Esther & Chandrasekhar, Arun G., 2012. "The Diffusion of Microfinance," CEPR Discussion Papers 8770, C.E.P.R. Discussion Papers.
    3. Liu, Xiaodong & Lee, Lung-fei, 2010. "GMM estimation of social interaction models with centrality," Journal of Econometrics, Elsevier, vol. 159(1), pages 99-115, November.
    4. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 531-542.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael D. König & Xiaodong Liu & Yves Zenou, 2019. "R&D Networks: Theory, Empirics, and Policy Implications," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 476-491, July.
    2. Zhu, Xuening & Huang, Danyang & Pan, Rui & Wang, Hansheng, 2020. "Multivariate spatial autoregressive model for large scale social networks," Journal of Econometrics, Elsevier, vol. 215(2), pages 591-606.
    3. Tiziano Arduini & Eleonora Patacchini & Edoardo Rainone, 2014. "Identification and Estimation of Outcome Response with Heterogeneous Treatment Externalities," EIEF Working Papers Series 1407, Einaudi Institute for Economics and Finance (EIEF), revised Sep 2014.
    4. Horrace, William C. & Liu, Xiaodong & Patacchini, Eleonora, 2016. "Endogenous network production functions with selectivity," Journal of Econometrics, Elsevier, vol. 190(2), pages 222-232.
    5. Arthur Lewbel & Xi Qu & Xun Tang, 2022. "Estimating Social Network Models with Missing Links," Boston College Working Papers in Economics 1056, Boston College Department of Economics.
    6. Lina Zhang, 2020. "Spillovers of Program Benefits with Missing Network Links," Papers 2009.09614, arXiv.org, revised Aug 2024.
    7. Chih‐Sheng Hsieh & Hans van Kippersluis, 2018. "Smoking initiation: Peers and personality," Quantitative Economics, Econometric Society, vol. 9(2), pages 825-863, July.
    8. Firmin Doko Tchatoka & Robert Garrard & Virginie Masson, 2017. "Testing for Stochastic Dominance in Social Networks," School of Economics and Public Policy Working Papers 2017-02, University of Adelaide, School of Economics and Public Policy.
    9. Chen, Denghui & Kiefer, Hua & Liu, Xiaodong, 2022. "Estimation of discrete choice network models with missing outcome data," Regional Science and Urban Economics, Elsevier, vol. 97(C).
    10. Arun Advani & Bansi Malde, 2018. "Credibly Identifying Social Effects: Accounting For Network Formation And Measurement Error," Journal of Economic Surveys, Wiley Blackwell, vol. 32(4), pages 1016-1044, September.
    11. Chih-Sheng Hsieh & Stanley I. M. Ko & Jaromír Kovářík & Trevon Logan, 2018. "Non-Randomly Sampled Networks: Biases and Corrections," NBER Working Papers 25270, National Bureau of Economic Research, Inc.
    12. Arun Advani & Bansi Malde, 2014. "Empirical methods for networks data: social effects, network formation and measurement error," IFS Working Papers W14/34, Institute for Fiscal Studies.
    13. Hsieh, Chih-Sheng & Lin, Xu, 2017. "Gender and racial peer effects with endogenous network formation," Regional Science and Urban Economics, Elsevier, vol. 67(C), pages 135-147.
    14. Arun Advani & Bansi Malde, 2018. "Methods to identify linear network models: a review," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 154(1), pages 1-16, December.
    15. Candelaria, Luis E. & Ura, Takuya, 2023. "Identification and inference of network formation games with misclassified links," Journal of Econometrics, Elsevier, vol. 235(2), pages 862-891.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2020. "Peer Effects in Networks: A Survey," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 603-629, August.
    2. Gibbons, Steve & Overman, Henry G. & Patacchini, Eleonora, 2015. "Spatial Methods," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 115-168, Elsevier.
    3. Chih‐Sheng Hsieh & Lung‐Fei Lee & Vincent Boucher, 2020. "Specification and estimation of network formation and network interaction models with the exponential probability distribution," Quantitative Economics, Econometric Society, vol. 11(4), pages 1349-1390, November.
    4. Daichi Shimamoto & Yasuyuki Todo & Yu Ri Kim & Petr Matous, 2022. "Identifying and decomposing peer effects on decision-making using a randomized controlled trial," Empirical Economics, Springer, vol. 63(2), pages 1029-1058, August.
    5. Bergé, Laurent & Carayol, Nicolas & Roux, Pascale, 2018. "How do inventor networks affect urban invention?," Regional Science and Urban Economics, Elsevier, vol. 71(C), pages 137-162.
    6. Tsusaka, Takuji W. & Kajisa, Kei & Pede, Valerien O. & Aoyagi, Keitaro, 2015. "Neighborhood effects and social behavior: The case of irrigated and rainfed farmers in Bohol, the Philippines," Journal of Economic Behavior & Organization, Elsevier, vol. 118(C), pages 227-246.
    7. Xiaodong Liu, 2020. "GMM identification and estimation of peer effects in a system of simultaneous equations," Journal of Spatial Econometrics, Springer, vol. 1(1), pages 1-27, December.
    8. Ida Johnsson & Hyungsik Roger Moon, 2017. "Estimation of Peer Effects in Endogenous Social Networks: Control Function Approach," Papers 1709.10024, arXiv.org, revised Jul 2019.
    9. Javier Mejia, 2018. "Social Networks and Entrepreneurship. Evidence from a Historical Episode of Industrialization," Documentos CEDE 16380, Universidad de los Andes, Facultad de Economía, CEDE.
    10. Patacchini, Eleonora & Bisin, Alberto, 2019. "Dynamic Social Interactions and Health Risk Behavior," CEPR Discussion Papers 13918, C.E.P.R. Discussion Papers.
    11. Bryan S. Graham, 2015. "Methods of Identification in Social Networks," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 465-485, August.
    12. Kuersteiner, Guido M. & Prucha, Ingmar R. & Zeng, Ying, 2023. "Efficient peer effects estimators with group effects," Journal of Econometrics, Elsevier, vol. 235(2), pages 2155-2194.
    13. Neilson, William & Wichmann, Bruno, 2014. "Social networks and non-market valuations," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 155-170.
    14. Eleonora Patacchini & Edoardo Rainone, 2017. "Social Ties and the Demand for Financial Services," Journal of Financial Services Research, Springer;Western Finance Association, vol. 52(1), pages 35-88, October.
    15. Kandpal, Eeshani & Baylis, Kathy, 2019. "The social lives of married women: Peer effects in female autonomy and investments in children," Journal of Development Economics, Elsevier, vol. 140(C), pages 26-43.
    16. Patacchini, Eleonora & Rainone, Edoardo & Zenou, Yves, 2017. "Heterogeneous peer effects in education," Journal of Economic Behavior & Organization, Elsevier, vol. 134(C), pages 190-227.
    17. Rokhaya Dieye & Habiba Djebbari & Felipe Barrera-Osorio, 2014. "Accounting for Peer Effects in Treatment Response," Working Papers halshs-01025680, HAL.
    18. Vincent Boucher & Yann Bramoullé, 2020. "Binary Outcomes and Linear Interactions," AMSE Working Papers 2038, Aix-Marseille School of Economics, France.
    19. Topa, Giorgio & Zenou, Yves, 2015. "Neighborhood and Network Effects," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 561-624, Elsevier.
    20. Liu, Xiaodong & Prucha, Ingmar R., 2018. "A robust test for network generated dependence," Journal of Econometrics, Elsevier, vol. 207(1), pages 92-113.

    More about this item

    Keywords

    Social networks; Local-average models; Local-aggregate models; Sampling of networks; Weak instruments;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:118:y:2013:i:1:p:243-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.