IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v115y2012i3p487-489.html
   My bibliography  Save this article

Chaos in German stock returns — New evidence from the 0–1 test

Author

Listed:
  • Webel, Karsten

Abstract

This paper applies the 0–1 test for chaos to returns from the German stock market, providing empirical evidence of chaotic structures in the returns of all DAX members. For noise reduction purposes, wavelet denoising is employed prior to the application of the 0–1 test.

Suggested Citation

  • Webel, Karsten, 2012. "Chaos in German stock returns — New evidence from the 0–1 test," Economics Letters, Elsevier, vol. 115(3), pages 487-489.
  • Handle: RePEc:eee:ecolet:v:115:y:2012:i:3:p:487-489
    DOI: 10.1016/j.econlet.2011.12.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176511006331
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2011.12.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alfarano, Simone & Lux, Thomas, 2007. "A Noise Trader Model As A Generator Of Apparent Financial Power Laws And Long Memory," Macroeconomic Dynamics, Cambridge University Press, vol. 11(S1), pages 80-101, November.
    2. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    3. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    4. Small Michael & Tse Chi K., 2003. "Determinism in Financial Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 7(3), pages 1-31, October.
    5. Hsieh, David A, 1991. "Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    6. Resende, Marcelo & Zeidan, Rodrigo M., 2008. "Expectations and chaotic dynamics: Empirical evidence on exchange rates," Economics Letters, Elsevier, vol. 99(1), pages 33-35, April.
    7. Apostolos Serletis & Periklis Gogas, 2000. "Purchasing power parity, nonlinearity and chaos," Applied Financial Economics, Taylor & Francis Journals, vol. 10(6), pages 615-622.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiwari, Aviral Kumar & Gupta, Rangan, 2019. "Chaos in G7 stock markets using over one century of data: A note," Research in International Business and Finance, Elsevier, vol. 47(C), pages 304-310.
    2. Ayşe İşi & Fatih Çemrek, 2019. "Comparison of the Global, Local and Semi-Local Chaotic Prediction Methods for Stock Markets: The Case of FTSE-100 Index," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 7(2), pages 289-300, December.
    3. Claudiu Tiberiu Albulescu & Aviral Kumar Tiwari & Phouphet Kyophilavong, 2021. "Nonlinearities and Chaos: A New Analysis of CEE Stock Markets," Mathematics, MDPI, vol. 9(7), pages 1-13, March.
    4. Xu, Kaiye & Shang, Pengjian & Feng, Guochen, 2015. "Multifractal time series analysis using the improved 0–1 test model," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 134-143.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    2. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    3. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Economics Working Papers 2008-08, Christian-Albrechts-University of Kiel, Department of Economics.
    4. Chian, Abraham C.-L. & Rempel, Erico L. & Rogers, Colin, 2006. "Complex economic dynamics: Chaotic saddle, crisis and intermittency," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1194-1218.
    5. Fos, Vyacheslav & Chinco, Alex, 2019. "The Sound Of Many Funds Rebalancing," CEPR Discussion Papers 13561, C.E.P.R. Discussion Papers.
    6. Marwil J. Dávila-Fernández & Serena Sordi & Alessia Cafferata, 2024. "How do you feel about going green? Modelling environmental sentiments in a growing open economy," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 19(4), pages 649-687, October.
    7. S. Alfarano & M. Milakovic & M. Raddant, 2013. "A note on institutional hierarchy and volatility in financial markets," The European Journal of Finance, Taylor & Francis Journals, vol. 19(6), pages 449-465, July.
    8. Blaurock, Ivonne & Schmitt, Noemi & Westerhoff, Frank, 2018. "Market entry waves and volatility outbursts in stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 153(C), pages 19-37.
    9. Daniela Federici & Giancarlo Gandolfo, 2011. "The Euro/Dollar Exchange Rate: Chaotic or Non-Chaotic?," CESifo Working Paper Series 3420, CESifo.
    10. Roberto Veneziani & Luca Zamparelli & Reiner Franke & Frank Westerhoff, 2017. "Taking Stock: A Rigorous Modelling Of Animal Spirits In Macroeconomics," Journal of Economic Surveys, Wiley Blackwell, vol. 31(5), pages 1152-1182, December.
    11. Lux, Thomas, 2008. "Stochastic behavioral asset pricing models and the stylized facts," Kiel Working Papers 1426, Kiel Institute for the World Economy (IfW Kiel).
    12. Federici, Daniela & Gandolfo, Giancarlo, 2012. "The Euro/Dollar exchange rate: Chaotic or non-chaotic? A continuous time model with heterogeneous beliefs," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 670-681.
    13. Paul De Grauwe, 2014. "Animal Spirits and Monetary Policy," World Scientific Book Chapters, in: Exchange Rates and Global Financial Policies, chapter 18, pages 473-520, World Scientific Publishing Co. Pte. Ltd..
    14. da Silveira, Jaylson Jair & Lima, Gilberto Tadeu, 2021. "Wage inequality as a source of endogenous macroeconomic fluctuations," Structural Change and Economic Dynamics, Elsevier, vol. 56(C), pages 35-52.
    15. repec:zbw:bofrdp:2007_032 is not listed on IDEAS
    16. Grazzini, Jakob & Richiardi, Matteo G. & Tsionas, Mike, 2017. "Bayesian estimation of agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 26-47.
    17. Steven N. Durlauf, 1996. "Statistical Mechanics Approaches to Socioeconomic Behavior," NBER Technical Working Papers 0203, National Bureau of Economic Research, Inc.
    18. Chiarella, Carl & Dieci, Roberto & He, Xue-Zhong, 2007. "Heterogeneous expectations and speculative behavior in a dynamic multi-asset framework," Journal of Economic Behavior & Organization, Elsevier, vol. 62(3), pages 408-427, March.
    19. Bohm, Volker & Wenzelburger, Jan, 2005. "On the performance of efficient portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 29(4), pages 721-740, April.
    20. Scheffknecht, Lukas & Geiger, Felix, 2011. "A behavioral macroeconomic model with endogenous boom-bust cycles and leverage dynamcis," FZID Discussion Papers 37-2011, University of Hohenheim, Center for Research on Innovation and Services (FZID).
    21. Hommes, Cars & Huang, Hai & Wang, Duo, 2005. "A robust rational route to randomness in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 29(6), pages 1043-1072, June.

    More about this item

    Keywords

    0–1 test; Chaos; Stock returns; Wavelet denoising;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:115:y:2012:i:3:p:487-489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.