IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v105y2009i1p113-116.html
   My bibliography  Save this article

On hourly wages and weekly earnings in the current population survey

Author

Listed:
  • Liu, Long

Abstract

This paper examines hourly wages and weekly earnings in the Outgoing Rotation Group (ORG) and the March Supplement of Current Population Survey (CPS) from 1998 to 2004. The findings suggest that the ORG contains less errors than the March CPS, and that weekly earnings contain less errors than hourly wages. The paper further finds that earnings differ systematically in the ORG and in the March CPS by gender and education levels.

Suggested Citation

  • Liu, Long, 2009. "On hourly wages and weekly earnings in the current population survey," Economics Letters, Elsevier, vol. 105(1), pages 113-116, October.
  • Handle: RePEc:eee:ecolet:v:105:y:2009:i:1:p:113-116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1765(09)00209-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843, Elsevier.
    2. Bound, John & Krueger, Alan B, 1991. "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," Journal of Labor Economics, University of Chicago Press, vol. 9(1), pages 1-24, January.
    3. Christopher R. Bollinger & Barry T. Hirsch, 2006. "Match Bias from Earnings Imputation in the Current Population Survey: The Case of Imperfect Matching," Journal of Labor Economics, University of Chicago Press, vol. 24(3), pages 483-520, July.
    4. Dan A. Black & Amelia M. Haviland & Seth G. Sanders & Lowell J. Taylor, 2008. "Gender Wage Disparities among the Highly Educated," Journal of Human Resources, University of Wisconsin Press, vol. 43(3), pages 630-659.
    5. Thomas Lemieux, 2006. "Increasing Residual Wage Inequality: Composition Effects, Noisy Data, or Rising Demand for Skill?," American Economic Review, American Economic Association, vol. 96(3), pages 461-498, June.
    6. Bollinger, Christopher R, 1998. "Measurement Error in the Current Population Survey: A Nonparametric Look," Journal of Labor Economics, University of Chicago Press, vol. 16(3), pages 576-594, July.
    7. Duncan, Greg J & Hill, Daniel H, 1985. "An Investigation of the Extent and Consequences of Measurement Error in Labor-Economic Survey Data," Journal of Labor Economics, University of Chicago Press, vol. 3(4), pages 508-532, October.
    8. Barry T. Hirsch & Edward J. Schumacher, 2004. "Match Bias in Wage Gap Estimates Due to Earnings Imputation," Journal of Labor Economics, University of Chicago Press, vol. 22(3), pages 689-722, July.
    9. Bound, John & Brown, Charles & Duncan, Greg J & Rodgers, Willard L, 1994. "Evidence on the Validity of Cross-Sectional and Longitudinal Labor Market Data," Journal of Labor Economics, University of Chicago Press, vol. 12(3), pages 345-368, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bollinger, Christopher R. & Hirsch, Barry & Hokayem, Charles M. & Ziliak, James P., 2018. "Trouble in the Tails? What We Know about Earnings Nonresponse Thirty Years after Lillard, Smith, and Welch," IZA Discussion Papers 11710, Institute of Labor Economics (IZA).
    2. Jeremy J. Nalewaik, 2014. "Missing Variation in the Great Moderation: Lack of Signal Error and OLS Regression," Finance and Economics Discussion Series 2014-27, Board of Governors of the Federal Reserve System (U.S.).
    3. Christopher R. Bollinger & Barry T. Hirsch, 2010. "GDP & Beyond – die europäische Perspektive," RatSWD Working Papers 165, German Data Forum (RatSWD).
    4. Arie Kapteyn & Jelmer Y. Ypma, 2007. "Measurement Error and Misclassification: A Comparison of Survey and Administrative Data," Journal of Labor Economics, University of Chicago Press, vol. 25(3), pages 513-551.
    5. Lynn, Peter & Jäckle, Annette & Sala, Emanuela & P. Jenkins, Stephen, 2004. "Validation of survey data on income and employment: the ISMIE experience," ISER Working Paper Series 2004-14, Institute for Social and Economic Research.
    6. Jesse Bricker & Gary V. Engelhardt, 2007. "Measurement Error in Earnings Data in the Health and Retirement Study," Working Papers, Center for Retirement Research at Boston College wp2007-16, Center for Retirement Research, revised Oct 2007.
    7. Siwei Cheng & Christopher R. Tamborini & ChangHwan Kim & Arthur Sakamoto, 2019. "Educational Variations in Cohort Trends in the Black-White Earnings Gap Among Men: Evidence From Administrative Earnings Data," Demography, Springer;Population Association of America (PAA), vol. 56(6), pages 2253-2277, December.
    8. Kristensen, Nicolai & Westergård-Nielsen, Niels C., 2006. "A Large-Scale Validation Study of Measurement Errors in Longitudinal Survey Data," IZA Discussion Papers 2329, Institute of Labor Economics (IZA).
    9. Peter Gottschalk & Minh Huynh, 2010. "Are Earnings Inequality and Mobility Overstated? The Impact of Nonclassical Measurement Error," The Review of Economics and Statistics, MIT Press, vol. 92(2), pages 302-315, May.
    10. Christopher R. Bollinger & Barry T. Hirsch, 2013. "Is Earnings Nonresponse Ignorable?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 407-416, May.
    11. Adam Bee & Joshua Mitchell & Nikolas Mittag & Jonathan Rothbaum & Carl Sanders & Lawrence Schmidt & Matthew Unrath, 2023. "National Experimental Wellbeing Statistics - Version 1," Working Papers 23-04, Center for Economic Studies, U.S. Census Bureau.
    12. ChangHwan Kim & Christopher R. Tamborini, 2014. "Response Error in Earnings," Sociological Methods & Research, , vol. 43(1), pages 39-72, February.
    13. John Abowd & Martha Stinson, 2011. "Estimating Measurement Error in SIPP Annual Job Earnings: A Comparison of Census Bureau Survey and SSA Administrative Data," Working Papers 11-20, Center for Economic Studies, U.S. Census Bureau.
    14. de Nicola, Francesca & Giné, Xavier, 2014. "How accurate are recall data? Evidence from coastal India," Journal of Development Economics, Elsevier, vol. 106(C), pages 52-65.
    15. Stüber, Heiko & Grabka, Markus M. & Schnitzlein, Daniel D., 2023. "A tale of two data sets: comparing German administrative and survey data using wage inequality as an example," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 57, pages 1-8.
    16. Jenkins, Stephen P. & Rios-Avila, Fernando, 2021. "Reconciling Reports: Modelling Employment Earnings and Measurement Errors Using Linked Survey and Administrative Data," IZA Discussion Papers 14405, Institute of Labor Economics (IZA).
    17. Akee, Randall K. Q., 2007. "Errors in Self-Reported Earnings: The Role of Previous Earnings Volatility," IZA Discussion Papers 3263, Institute of Labor Economics (IZA).
    18. Bruce D. Meyer & Nikolas Mittag, 2015. "Using Linked Survey and Administrative Data to Better Measure Income: Implications for Poverty, Program Effectiveness and Holes in the Safety Net," Upjohn Working Papers 15-242, W.E. Upjohn Institute for Employment Research.
    19. Whalley, Alexander, 2011. "Education and labor market risk: Understanding the role of data cleaning," Economics of Education Review, Elsevier, vol. 30(3), pages 528-545, June.
    20. Melvin Stephens & Takashi Unayama, 2019. "Estimating the Impacts of Program Benefits: Using Instrumental Variables with Underreported and Imputed Data," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 468-475, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:105:y:2009:i:1:p:113-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.