IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v66y2008i1p23-37.html
   My bibliography  Save this article

Efficiency, equity, and sustainability in a water quantity-quality optimization model in the Rio Grande basin

Author

Listed:
  • Ward, Frank A.
  • Pulido-Velázquez, Manuel

Abstract

Integrated hydrologic and economic optimization models at the basin scale provide a framework for policy design, implementation, and evaluation in water-stressed basins. Despite the considerable potential that basin scale analysis offers, few basin-wide studies have examined tradeoffs among efficiency, equity, and sustainability when analyzing the design of water resource programs. This paper develops a basin scale framework to identify hydrologic and economic impacts of alternative water pricing programs that comply with environmental regulations for protecting water quality. Key issues are examined that confront integrated hydroeconomic basin models: linking water and economics, spatial and temporal scale integration, and quantity-quality relationships. Economic efficiency is defined and measured for each of two urban water pricing arrangements that comply with urban water quality protection regulations. Alternative measures of equity are analyzed in both spatial and temporal dimensions. Sustainability is evaluated physically for protecting the water supply and financially for long-term revenue viability. The approach is illustrated from results of a dynamic nonlinear programming optimization model of water use in North America's Rio Grande basin. The model optimizes the net present value of the basin's total economic benefits subject to constraints on equity, sustainability, hydrology, and institutions. It is applied to assess impacts of a two-tiered pricing program that complies with recently implemented drinking water quality standards for the basin's two largest U.S. cities: Albuquerque, New Mexico, and El Paso, Texas. Results suggest that two-tiered pricing of urban water supply has considerable potential to perform well in meeting the aims of efficiency, equity, and sustainability. Findings provide a general framework for designing water pricing programs that comply with environmental regulations.

Suggested Citation

  • Ward, Frank A. & Pulido-Velázquez, Manuel, 2008. "Efficiency, equity, and sustainability in a water quantity-quality optimization model in the Rio Grande basin," Ecological Economics, Elsevier, vol. 66(1), pages 23-37, May.
  • Handle: RePEc:eee:ecolec:v:66:y:2008:i:1:p:23-37
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(07)00444-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garcia, Serge & Reynaud, Arnaud, 2004. "Estimating the benefits of efficient water pricing in France," Resource and Energy Economics, Elsevier, vol. 26(1), pages 1-25, March.
    2. Rosegrant, M. W. & Ringler, C. & McKinney, D. C. & Cai, X. & Keller, A. & Donoso, G., 2000. "Integrated economic-hydrologic water modeling at the basin scale: the Maipo river basin," Agricultural Economics, Blackwell, vol. 24(1), pages 33-46, December.
    3. Young, R.A., 1996. "Measuring Economic Benefits for Water Investments and Policies," Papers 338, World Bank - Technical Papers.
    4. Consuelo Varela‐Ortega & José M. Sumpsi & Alberto Garrido & María Blanco & Eva Iglesias, 1998. "Water pricing policies, public decision making and farmers' response: implications for water policy," Agricultural Economics, International Association of Agricultural Economists, vol. 19(1-2), pages 193-202, September.
    5. Frank A. Ward & Richard A. Cole & Robert A. Deitner & Catherine A. Green-Hammond, 1997. "Limiting Environmental Program Contradictions: A Demand Systems Application to Fishery Management," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(3), pages 803-813.
    6. Bockstael, N. & Costanza, R. & Strand, I. & Boynton, W. & Bell, K. & Wainger, L., 1995. "Ecological economic modeling and valuation of ecosystems," Ecological Economics, Elsevier, vol. 14(2), pages 143-159, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhi-Hua Wang & Rachel von Gnechten & David A. Sampson & Dave D. White, 2019. "Wastewater Reclamation Holds a Key for Water Sustainability in Future Urban Development of Phoenix Metropolitan Area," Sustainability, MDPI, vol. 11(13), pages 1-13, June.
    2. Ghosh, Sanchari & Willett, Keith D., 2021. "Water Permit Trading for reservoir water under competing demands and downstream flows," 2021 Annual Meeting, August 1-3, Austin, Texas 313858, Agricultural and Applied Economics Association.
    3. Gürlük, Serkan & Ward, Frank A., 2009. "Integrated basin management: Water and food policy options for Turkey," Ecological Economics, Elsevier, vol. 68(10), pages 2666-2678, August.
    4. Brouwer, Roy & Hofkes, Marjan, 2008. "Integrated hydro-economic modelling: Approaches, key issues and future research directions," Ecological Economics, Elsevier, vol. 66(1), pages 16-22, May.
    5. Pande, Saket & van den Boom, Bart & Savenije, Hubert H.G. & Gosain, Ashvani K., 2011. "Water valuation at basin scale with application to western India," Ecological Economics, Elsevier, vol. 70(12), pages 2416-2428.
    6. Gohar, Abdelaziz A. & Ward, Frank A., 2010. "Gains from expanded irrigation water trading in Egypt: An integrated basin approach," Ecological Economics, Elsevier, vol. 69(12), pages 2535-2548, October.
    7. Bell, Andrew & Zhu, Tingju & Xie, Hua & Ringler, Claudia, 2014. "Climate–water interactions—Challenges for improved representation in integrated assessment models," Energy Economics, Elsevier, vol. 46(C), pages 510-521.
    8. Flavia Tromboni & Lucia Bortolini & José Morábito, 2014. "Integrated hydrologic–economic decision support system for groundwater use confronting climate change uncertainties in the Tunuyán River basin, Argentina," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 16(6), pages 1317-1336, December.
    9. Tran, Dat Q. & Kovacs, Kent & Wallander, Steven, 2020. "Optimal groundwater augmentation through managed aquifer recharge and on-farm reservoir under uncertainty and risk," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304295, Agricultural and Applied Economics Association.
    10. Rupérez-Moreno, Carmen & Senent-Aparicio, Javier & Martinez-Vicente, David & García-Aróstegui, José Luis & Calvo-Rubio, Francisco Cabezas & Pérez-Sánchez, Julio, 2017. "Sustainability of irrigated agriculture with overexploited aquifers: The case of Segura basin (SE, Spain)," Agricultural Water Management, Elsevier, vol. 182(C), pages 67-76.
    11. Mohammad R. Zolfaghari & Elnaz Peyghaleh, 2015. "Implementation of Equity in Resource Allocation for Regional Earthquake Risk Mitigation Using Two‐Stage Stochastic Programming," Risk Analysis, John Wiley & Sons, vol. 35(3), pages 434-458, March.
    12. Frank Ward & Manuel Pulido-Velazquez, 2012. "Economic Costs of Sustaining Water Supplies: Findings from the Rio Grande," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(10), pages 2883-2909, August.
    13. Akgün, Aliye Ahu & van Leeuwen, Eveline & Nijkamp, Peter, 2012. "A multi-actor multi-criteria scenario analysis of regional sustainable resource policy," Ecological Economics, Elsevier, vol. 78(C), pages 19-28.
    14. Lina Zhang & Xiaoling Zhang & Fengping Wu & Qinghua Pang, 2020. "Basin Initial Water Rights Allocation under Multiple Uncertainties: a Trade-off Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 955-988, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Fraiture, Charlotte & Perry, C. J., 2007. "Why is agricultural water demand unresponsive at low price ranges?," IWMI Books, Reports H040602, International Water Management Institute.
    2. de Fraiture, Charlotte & Perry, C. J., 2007. "Why is agricultural water demand unresponsive at low price ranges?," Book Chapters,, International Water Management Institute.
    3. Calatrava-Leyva, Javier & Colmenero, Alberto Garrido, 2001. "Analisis del efecto de los mercados de agua sobre el beneficio de las explotaciones, la contaminacion por nitratos y el empleo eventual agrario," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 1(02), pages 1-21, December.
    4. Simon Anastasiadis & Suzi Kerr & Marie-Laure Nauleau & Tim Cox & Kit Rutherford, 2014. "Does complex hydrology require complex water quality policy?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(1), pages 130-145, January.
    5. Alfonso Expósito & Julio Berbel, 2017. "Why Is Water Pricing Ineffective for Deficit Irrigation Schemes? A Case Study in Southern Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 1047-1059, February.
    6. Bradley Franklin & Keith C. Knapp & Kurt A. Schwabe, 2017. "A Dynamic Regional Model of Irrigated Perennial Crop Production," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-30, January.
    7. Teresa Sanchez-Martinez & Noelina Rodriguez-Ferrero, 2017. "Ramsey Pricing for Cost Recovery Applied to Reservoir Infrastructure in Andalucía (Spain)," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-20, October.
    8. Del Villar, Alberto, 2010. "Los precios de los servicios del agua. Un análisis prospectivo de demanda sobre los usos domésticos/Water Services Prices. A Water Demand Forecast Analysis for Household Uses," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 333-356, Agosto.
    9. Markose Chekol Zewdie & Michele Moretti & Daregot Berihun Tenessa & Zemen Ayalew Ayele & Jan Nyssen & Enyew Adgo Tsegaye & Amare Sewnet Minale & Steven Van Passel, 2021. "Agricultural Technical Efficiency of Smallholder Farmers in Ethiopia: A Stochastic Frontier Approach," Land, MDPI, vol. 10(3), pages 1-17, March.
    10. Bielsa, Jorge & Cazcarro, Ignacio & Sancho, Yolanda, 2011. "Integration of hydrological and economic approaches to water and land management in Mediterranean climates: an initial case study in agriculture," MPRA Paper 36445, University Library of Munich, Germany.
    11. Taylor, Michael H. & Rollins, Kimberly, 2012. "Using Ecological Models to Coordinate Valuation of Ecological Change on Western Rangelands for ex post Application to Policy Analysis," Western Economics Forum, Western Agricultural Economics Association, vol. 11(1), pages 1-9.
    12. Nunes, P.A.L.D. & Nijkamp, P., 2011. "Biodiversity: Economic perspectives," Serie Research Memoranda 0002, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    13. Jakus, Paul M. & Dowell, Paula & Murray, Matthew N., 2000. "The Effect Of Fluctuating Water Levels On Reservoir Fishing," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 25(2), pages 1-13, December.
    14. Arbues, Fernando & Garcia-Valinas, Maria Angeles & Martinez-Espineira, Roberto, 2003. "Estimation of residential water demand: a state-of-the-art review," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 32(1), pages 81-102, March.
    15. Fuente, David & Kabubo-Mariara, Jane & Kimuyu, Peter & Mwaura, Mbutu & Whittington, Dale, 2017. "Assessing the Performance of Alternative Water and Sanitation Tariffs: The Case of Nairobi, Kenya," EfD Discussion Paper 17-21, Environment for Development, University of Gothenburg.
    16. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    17. Hui Li & Robert P. Berrens & Alok K. Bohara & Hank C. Jenkins-Smith & Carol L. Silva & David L. Weimer, 2005. "Exploring the Beta Model Using Proportional Budget Information in a Contingent Valuation Study," Economics Bulletin, AccessEcon, vol. 17(8), pages 1-9.
    18. Britz, Wolfgang & Kuhn, Arnim, 2011. "Can Hydro-economic River Basis Models Simulate Water Shadow Prices Under Asymmetric Access?," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114272, European Association of Agricultural Economists.
    19. Christopher Müller, 2015. "Welfare Effects of Water Pricing in Germany," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 1-25, December.
    20. Prakashan Veettil & Stijn Speelman & Guido Huylenbroeck, 2013. "Estimating the Impact of Water Pricing on Water Use Efficiency in Semi-arid Cropping System: An Application of Probabilistically Constrained Nonparametric Efficiency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 55-73, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:66:y:2008:i:1:p:23-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.