IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v42y2002i1-2p117-129.html
   My bibliography  Save this article

Successful transfer of environmentally sound technologies for greenhouse gas mitigation: a framework for matching the needs of developing countries

Author

Listed:
  • Ramanathan, R.

Abstract

No abstract is available for this item.

Suggested Citation

  • Ramanathan, R., 2002. "Successful transfer of environmentally sound technologies for greenhouse gas mitigation: a framework for matching the needs of developing countries," Ecological Economics, Elsevier, vol. 42(1-2), pages 117-129, August.
  • Handle: RePEc:eee:ecolec:v:42:y:2002:i:1-2:p:117-129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(02)00043-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vargas, Luis G., 1990. "An overview of the analytic hierarchy process and its applications," European Journal of Operational Research, Elsevier, vol. 48(1), pages 2-8, September.
    2. Mirasgedis, S. & Diakoulaki, D., 1997. "Multicriteria analysis vs. externalities assessment for the comparative evaluation of electricity generation systems," European Journal of Operational Research, Elsevier, vol. 102(2), pages 364-379, October.
    3. Richard Adams, 1997. "Functional Markets and Indigenous Capacity for Sustainable Development: What Can Transnational Corporations Do through Technology Transfer?," Palgrave Macmillan Books, in: M. R. Bhagavan (ed.), New Generic Technologies in Developing Countries, chapter 9, pages 195-213, Palgrave Macmillan.
    4. Raphael Kaplinsky, 1990. "Technology Transfer, Adaptation and Generation: A Framework for Evaluation," Palgrave Macmillan Books, in: Manas Chatterji (ed.), Technology Transfer in the Developing Countries, chapter 2, pages 19-26, Palgrave Macmillan.
    5. Ramanathan, R. & Ganesh, L. S., 1994. "Group preference aggregation methods employed in AHP: An evaluation and an intrinsic process for deriving members' weightages," European Journal of Operational Research, Elsevier, vol. 79(2), pages 249-265, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boyd, Anya, 2012. "Informing international UNFCCC technology mechanisms from the ground up: Using biogas technology in South Africa as a case study to evaluate the usefulness of potential elements of an international te," Energy Policy, Elsevier, vol. 51(C), pages 301-311.
    2. Charikleia Karakosta, 2016. "A Holistic Approach for Addressing the Issue of Effective Technology Transfer in the Frame of Climate Change," Energies, MDPI, vol. 9(7), pages 1-20, June.
    3. Karagiannidis, A. & Wittmaier, M. & Langer, S. & Bilitewski, B. & Malamakis, A., 2009. "Thermal processing of waste organic substrates: Developing and applying an integrated framework for feasibility assessment in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2156-2162, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chwolka, Anne & Raith, Matthias G., 2001. "Group preference aggregation with the AHP - implications for multiple-issue agendas," European Journal of Operational Research, Elsevier, vol. 132(1), pages 176-186, July.
    2. Rojas-Zerpa, Juan C. & Yusta, Jose M., 2015. "Application of multicriteria decision methods for electric supply planning in rural and remote areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 557-571.
    3. Parra-López, Carlos & Reina-Usuga, Liliana & Garcia-Garcia, Guillermo & Carmona-Torres, Carmen, 2024. "Functional analysis of technological innovation systems enabling digital transformation: A semi-quantitative multicriteria framework applied in the olive sector," Agricultural Systems, Elsevier, vol. 214(C).
    4. Ni Li & Minghui Sun & Zhuming Bi & Zeya Su & Chao Wang, 2014. "A new methodology to support group decision-making for IoT-based emergency response systems," Information Systems Frontiers, Springer, vol. 16(5), pages 953-977, November.
    5. Patrizio, P. & Leduc, S. & Chinese, D. & Kraxner, F., 2017. "Internalizing the external costs of biogas supply chains in the Italian energy sector," Energy, Elsevier, vol. 125(C), pages 85-96.
    6. Forman, Ernest & Peniwati, Kirti, 1998. "Aggregating individual judgments and priorities with the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 108(1), pages 165-169, July.
    7. Henao, Felipe & Cherni, Judith A. & Jaramillo, Patricia & Dyner, Isaac, 2012. "A multicriteria approach to sustainable energy supply for the rural poor," European Journal of Operational Research, Elsevier, vol. 218(3), pages 801-809.
    8. Melachrinoudis, Emanuel & Min, Hokey, 2000. "The dynamic relocation and phase-out of a hybrid, two-echelon plant/warehousing facility: A multiple objective approach," European Journal of Operational Research, Elsevier, vol. 123(1), pages 1-15, May.
    9. Jacinto González-Pachón & Carlos Romero, 2007. "Inferring consensus weights from pairwise comparison matrices without suitable properties," Annals of Operations Research, Springer, vol. 154(1), pages 123-132, October.
    10. Lucas, Rochelle Irene & Promentilla, Michael Angelo & Ubando, Aristotle & Tan, Raymond Girard & Aviso, Kathleen & Yu, Krista Danielle, 2017. "An AHP-based evaluation method for teacher training workshop on information and communication technology," Evaluation and Program Planning, Elsevier, vol. 63(C), pages 93-100.
    11. Bolloju, N., 2001. "Aggregation of analytic hierarchy process models based on similarities in decision makers' preferences," European Journal of Operational Research, Elsevier, vol. 128(3), pages 499-508, February.
    12. Papapostolou, Aikaterini & Karakosta, Charikleia & Nikas, Alexandros & Psarras, John, 2017. "Exploring opportunities and risks for RES-E deployment under Cooperation Mechanisms between EU and Western Balkans: A multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 519-530.
    13. Mohammad Kanan & Ansa Rida Dilshad & Sadaf Zahoor & Amjad Hussain & Muhammad Salman Habib & Amjad Mehmood & Zaher Abusaq & Allam Hamdan & Jihad Asad, 2023. "An Empirical Study of the Implementation of an Integrated Ergo-Green-Lean Framework: A Case Study," Sustainability, MDPI, vol. 15(13), pages 1-24, June.
    14. George Gaprindashvili & Cees Westen, 2016. "Generation of a national landslide hazard and risk map for the country of Georgia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 69-101, January.
    15. Xunjie Gou & Zeshui Xu & Xinxin Wang & Huchang Liao, 2021. "Managing consensus reaching process with self-confident double hierarchy linguistic preference relations in group decision making," Fuzzy Optimization and Decision Making, Springer, vol. 20(1), pages 51-79, March.
    16. Aleksandra Król-Badziak & Jerzy Kozyra & Stelios Rozakis, 2024. "Evaluation of Climate Suitability for Maize Production in Poland under Climate Change," Sustainability, MDPI, vol. 16(16), pages 1-21, August.
    17. Zsuzsanna Katalin Szabo & Zsombor Szádoczki & Sándor Bozóki & Gabriela C. Stănciulescu & Dalma Szabo, 2021. "An Analytic Hierarchy Process Approach for Prioritisation of Strategic Objectives of Sustainable Development," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    18. Asma M. A. Bahurmoz, 2003. "The Analytic Hierarchy Process at Dar Al-Hekma, Saudi Arabia," Interfaces, INFORMS, vol. 33(4), pages 70-78, August.
    19. Shuping Huang & Cecil Konijnendijk van den Bosch & Weicong Fu & Jinda Qi & Ziru Chen & Zhipeng Zhu & Jianwen Dong, 2018. "Does Adding Local Tree Elements into Dwellings Enhance Individuals’ Homesickness? Scenario-Visualisation for Developing Sustainable Rural Landscapes," Sustainability, MDPI, vol. 10(11), pages 1-17, October.
    20. Patlitzianas, Konstantinos D. & Pappa, Anna & Psarras, John, 2008. "An information decision support system towards the formulation of a modern energy companies' environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 790-806, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:42:y:2002:i:1-2:p:117-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.