IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v227y2025ics0921800924003057.html
   My bibliography  Save this article

Hybrid multi-stage steel footprinting unveils a more interdependent material foundation of the global economy

Author

Listed:
  • Li, Xinyi
  • Zhang, Chao
  • Yang, Xue
  • Xia, Ziqian
  • Cao, Zhi
  • Wang, Peng
  • Wang, Heming
  • Wang, Tao
  • Liu, Gang
  • Chen, Wei-Qiang

Abstract

Steel is foundational to modern society, yet tracking its socio-economic metabolism is challenging due to the complex global trade networks. Traditional indicators, such as domestic material consumption (DMC) and consumption-based material footprints (MF), typically focus on metal ore extraction, overlooking the multiple stages of steel production and consumption. To address this, we integrate multi-national anthropogenic steel cycles and international trade networks of steel-containing products into a global monetary multi-regional input-output (MRIO) model. We construct material efficiency indicators based on footprints of iron ores, crude steel, castings, finished steel, and fabricated steel products, comparing them with conventional economy-wide material flow indicators like domestic material production (DMP) and DMC. Our findings reveal that per capita multi-stage MF indicators exhibit more robust log-linear relationships with per capita GDP with an average R2 value of 0.72 compared to 0.10 and 0.18 for DMP and DMC. Shares of Embodied trade in total global production exceed direct trade by 24 percentage points on average, emphasizing the significance of international embodied metal transfers. Using multi-stage MF indicators also reduces disparities in material efficiency between developed and developing countries. This study unravels the intricacies of global steel supply chains and the true interdependencies of steel-containing products among countries.

Suggested Citation

  • Li, Xinyi & Zhang, Chao & Yang, Xue & Xia, Ziqian & Cao, Zhi & Wang, Peng & Wang, Heming & Wang, Tao & Liu, Gang & Chen, Wei-Qiang, 2025. "Hybrid multi-stage steel footprinting unveils a more interdependent material foundation of the global economy," Ecological Economics, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:ecolec:v:227:y:2025:i:c:s0921800924003057
    DOI: 10.1016/j.ecolecon.2024.108408
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800924003057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2024.108408?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weinzettel, Jan & Wood, Richard, 2018. "Environmental Footprints of Agriculture Embodied in International Trade: Sensitivity of Harvested Area Footprint of Chinese Exports," Ecological Economics, Elsevier, vol. 145(C), pages 323-330.
    2. Arnold Tukker & Stefan Giljum & Richard Wood, 2018. "Recent Progress in Assessment of Resource Efficiency and Environmental Impacts Embodied in Trade: An Introduction to this Special Issue," Journal of Industrial Ecology, Yale University, vol. 22(3), pages 489-501, June.
    3. Eisenmenger, Nina & Wiedenhofer, Dominik & Schaffartzik, Anke & Giljum, Stefan & Bruckner, Martin & Schandl, Heinz & Wiedmann, Thomas O. & Lenzen, Manfred & Tukker, Arnold & Koning, Arjan, 2016. "Consumption-based material flow indicators — Comparing six ways of calculating the Austrian raw material consumption providing six results," Ecological Economics, Elsevier, vol. 128(C), pages 177-186.
    4. Marcel Timmer & Abdul A. Erumban & Reitze Gouma & Bart Los & Umed Temurshoev & Gaaitzen J. de Vries & I–aki Arto & Valeria Andreoni AurŽlien Genty & Frederik Neuwahl & JosŽ M. Rueda?Cantuche & Joseph , 2012. "The World Input-Output Database (WIOD): Contents, Sources and Methods," IIDE Discussion Papers 20120401, Institue for International and Development Economics.
    5. Konstantin Stadler & Richard Wood & Tatyana Bulavskaya & Carl†Johan Södersten & Moana Simas & Sarah Schmidt & Arkaitz Usubiaga & José Acosta†Fernández & Jeroen Kuenen & Martin Bruckner & Stefan, 2018. "EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi†Regional Input†Output Tables," Journal of Industrial Ecology, Yale University, vol. 22(3), pages 502-515, June.
    6. Manfred Lenzen & Arne Geschke & James West & Jacob Fry & Arunima Malik & Stefan Giljum & Llorenç Milà i Canals & Pablo Piñero & Stephan Lutter & Thomas Wiedmann & Mengyu Li & Maartje Sevenster & Janez, 2022. "Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12," Nature Sustainability, Nature, vol. 5(2), pages 157-166, February.
    7. Wen Chen & Lizhi Xing, 2022. "Measuring the Intermediate Goods’ External Dependency on the Global Value Chain: A Case Study of China," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
    8. Peng Wang & Morten Ryberg & Yi Yang & Kuishuang Feng & Sami Kara & Michael Hauschild & Wei-Qiang Chen, 2021. "Efficiency stagnation in global steel production urges joint supply- and demand-side mitigation efforts," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    9. Arunima Malik & Darian McBain & Thomas O. Wiedmann & Manfred Lenzen & Joy Murray, 2019. "Advancements in Input‐Output Models and Indicators for Consumption‐Based Accounting," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 300-312, April.
    10. Zhang, Chao & Chen, Wei-Qiang & Liu, Gang & Zhu, Da-Jian, 2017. "Economic Growth and the Evolution of Material Cycles: An Analytical Framework Integrating Material Flow and Stock Indicators," Ecological Economics, Elsevier, vol. 140(C), pages 265-274.
    11. Johan Rockström & Will Steffen & Kevin Noone & Åsa Persson & F. Stuart Chapin & Eric F. Lambin & Timothy M. Lenton & Marten Scheffer & Carl Folke & Hans Joachim Schellnhuber & Björn Nykvist & Cynthia , 2009. "A safe operating space for humanity," Nature, Nature, vol. 461(7263), pages 472-475, September.
    12. M. Fischer‐Kowalski & F. Krausmann & S. Giljum & S. Lutter & A. Mayer & S. Bringezu & Y. Moriguchi & H. Schütz & H. Schandl & H. Weisz, 2011. "Methodology and Indicators of Economy‐wide Material Flow Accounting," Journal of Industrial Ecology, Yale University, vol. 15(6), pages 855-876, December.
    13. Lutter, Stephan & Giljum, Stefan & Bruckner, Martin, 2016. "A review and comparative assessment of existing approaches to calculate material footprints," Ecological Economics, Elsevier, vol. 127(C), pages 1-10.
    14. Pauliuk, Stefan & Wang, Tao & Müller, Daniel B., 2013. "Steel all over the world: Estimating in-use stocks of iron for 200 countries," Resources, Conservation & Recycling, Elsevier, vol. 71(C), pages 22-30.
    15. Heming Wang & Heinz Schandl & Guoqiang Wang & Lin Ma & Yao Wang, 2019. "Regional material flow accounts for China: Examining China's natural resource use at the provincial and national level," Journal of Industrial Ecology, Yale University, vol. 23(6), pages 1425-1438, December.
    16. Dorninger, Christian & Hornborg, Alf & Abson, David J. & von Wehrden, Henrik & Schaffartzik, Anke & Giljum, Stefan & Engler, John-Oliver & Feller, Robert L. & Hubacek, Klaus & Wieland, Hanspeter, 2021. "Global patterns of ecologically unequal exchange: Implications for sustainability in the 21st century," Ecological Economics, Elsevier, vol. 179(C).
    17. Yang, Xue & Zhang, Chao & Li, Xinyi & Cao, Zhi & Wang, Peng & Wang, Heming & Liu, Gang & Xia, Ziqian & Zhu, Dajian & Chen, Wei-Qiang, 2024. "Multinational dynamic steel cycle analysis reveals sequential decoupling between material use and economic growth," Ecological Economics, Elsevier, vol. 217(C).
    18. Sören Lindner & Dabo Guan, 2014. "A Hybrid-Unit Energy Input-Output Model to Evaluate Embodied Energy and Life Cycle Emissions for China's Economy," Journal of Industrial Ecology, Yale University, vol. 18(2), pages 201-211, April.
    19. Moran, Daniel D. & Lenzen, Manfred & Kanemoto, Keiichiro & Geschke, Arne, 2013. "Does ecologically unequal exchange occur?," Ecological Economics, Elsevier, vol. 89(C), pages 177-186.
    20. Schaffartzik, Anke & Duro, Juan Antonio & Krausmann, Fridolin, 2019. "Global appropriation of resources causes high international material inequality – Growth is not the solution," Ecological Economics, Elsevier, vol. 163(C), pages 9-19.
    21. Benedikt Bruckner & Yuli Shan & Christina Prell & Yannan Zhou & Honglin Zhong & Kuishuang Feng & Klaus Hubacek, 2023. "Ecologically unequal exchanges driven by EU consumption," Nature Sustainability, Nature, vol. 6(5), pages 587-598, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanspeter Wieland & Stefan Giljum & Nina Eisenmenger & Dominik Wiedenhofer & Martin Bruckner & Anke Schaffartzik & Anne Owen, 2020. "Supply versus use designs of environmental extensions in input–output analysis: Conceptual and empirical implications for the case of energy," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 548-563, June.
    2. Piñero, Pablo & Pérez-Neira, David & Infante-Amate, Juan & Chas-Amil, María L. & Doldán-García, Xoán R., 2020. "Unequal raw material exchange between and within countries: Galicia (NW Spain) as a core-periphery economy," Ecological Economics, Elsevier, vol. 172(C).
    3. Zhu, Xuehong & Zeng, Anqi & Zhong, Meirui & Huang, Jianbai, 2021. "Elasticity of substitution and biased technical change in the CES production function for China's metal-intensive industries," Resources Policy, Elsevier, vol. 73(C).
    4. Yang, Xue & Zhang, Chao & Li, Xinyi & Cao, Zhi & Wang, Peng & Wang, Heming & Liu, Gang & Xia, Ziqian & Zhu, Dajian & Chen, Wei-Qiang, 2024. "Multinational dynamic steel cycle analysis reveals sequential decoupling between material use and economic growth," Ecological Economics, Elsevier, vol. 217(C).
    5. Pérez-Sánchez, Laura & Velasco-Fernández, Raúl & Giampietro, Mario, 2021. "The international division of labor and embodied working time in trade for the US, the EU and China," Ecological Economics, Elsevier, vol. 180(C).
    6. Theine, Hendrik & Humer, Stefan & Moser, Mathias & Schnetzer, Matthias, 2022. "Emissions inequality: Disparities in income, expenditure, and the carbon footprint in Austria," Ecological Economics, Elsevier, vol. 197(C).
    7. Wang, Jiayu & Wang, Ke & Hubacek, Klaus & Feng, Kuishuang & Shan, Yuli & Wei, Yi-Ming, 2025. "Changes in global trade patterns increase global inequality towards Sustainable Development Goals," Ecological Economics, Elsevier, vol. 227(C).
    8. Bruckner, Martin & Wood, Richard & Moran, Daniel & Kuschnig, Nikolas & Wieland, Hanspeter & Maus, Victor & Börner, Jan, 2019. "FABIO - The Construction of the Food and Agriculture Biomass Input-Output Model," Ecological Economic Papers 27, WU Vienna University of Economics and Business.
    9. Tobias Wendler, 2019. "About the Relationship Between Green Technology and Material Usage," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(3), pages 1383-1423, November.
    10. Ferreira, João-Pedro & Marques, João Lourenço & Moreno Pires, Sara & Iha, Katsunori & Galli, Alessandro, 2023. "Supporting national-level policies for sustainable consumption in Portugal: A socio-economic Ecological Footprint analysis," Ecological Economics, Elsevier, vol. 205(C).
    11. Florian Dierickx & Arnaud Diemer, 2020. "Challenging a Methodology to Analyse the Cycling of Materials and Induced Energy use Over Time," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 26(4), pages 106-124, November.
    12. Pothen, Frank & Tovar Reaños, Miguel Angel, 2018. "The Distribution of Material Footprints in Germany," Ecological Economics, Elsevier, vol. 153(C), pages 237-251.
    13. Jingwen Huo & Peipei Chen & Klaus Hubacek & Heran Zheng & Jing Meng & Dabo Guan, 2022. "Full‐scale, near real‐time multi‐regional input–output table for the global emerging economies (EMERGING)," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1218-1232, August.
    14. Shepard, Jun U. & Pratson, Lincoln F., 2020. "Hybrid input-output analysis of embodied energy security," Applied Energy, Elsevier, vol. 279(C).
    15. Tilsted, Joachim Peter & Bjørn, Anders & Majeau-Bettez, Guillaume & Lund, Jens Friis, 2021. "Accounting matters: Revisiting claims of decoupling and genuine green growth in Nordic countries," Ecological Economics, Elsevier, vol. 187(C).
    16. Magalhães, Nelo & Fressoz, Jean-Baptiste & Jarrige, François & Le Roux, Thomas & Levillain, Gaëtan & Lyautey, Margot & Noblet, Guillaume & Bonneuil, Christophe, 2019. "The Physical Economy of France (1830–2015). The History of a Parasite?," Ecological Economics, Elsevier, vol. 157(C), pages 291-300.
    17. Hekmatpour, Peyman & Leslie, Carrie McLachlin, 2022. "Ecologically unequal exchange and disparate death rates attributable to air pollution: A comparative study of 169 countries from 1991 to 2017," OSF Preprints racms, Center for Open Science.
    18. Christa Liedtke & Katrin Bienge & Klaus Wiesen & Jens Teubler & Kathrin Greiff & Michael Lettenmeier & Holger Rohn, 2014. "Resource Use in the Production and Consumption System—The MIPS Approach," Resources, MDPI, vol. 3(3), pages 1-31, August.
    19. Lena Gerdes & Bernhard Rengs & Manuel Scholz-Wäckerle, 2022. "Labor and environment in global value chains: an evolutionary policy study with a three-sector and two-region agent-based macroeconomic model," Journal of Evolutionary Economics, Springer, vol. 32(1), pages 123-173, January.
    20. Onat, Nuri Cihat & Kucukvar, Murat, 2020. "Carbon footprint of construction industry: A global review and supply chain analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:227:y:2025:i:c:s0921800924003057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.