IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v116y2015icp270-279.html
   My bibliography  Save this article

The rebound effects of switching to vegetarianism. A microeconomic analysis of Swedish consumption behavior

Author

Listed:
  • Grabs, Janina

Abstract

Sustainable diets, in particular vegetarianism, are often promoted as effective measures to reduce our environmental footprint. Yet, few conclusions take full-scale behavioral changes into consideration. This can be achieved by calculating the indirect environmental rebound effect related to the re-spending of expenditure saved during the initial behavioral shift. This study aims to quantify the potential energy use and greenhouse gas emission savings, and most likely rebound effects, related to an average Swedish consumer's shift to vegetarianism. Using household budget survey data, it estimates Engel curves of 117 consumption goods, derives marginal expenditure shares, and links these values to environmental intensity indicators. Results indicate that switching to vegetarianism could save consumers 16% of the energy use and 20% of the greenhouse gas emissions related to their dietary consumption. However, if they re-spend the saved income according to their current preferences, they would forego 96% of potential energy savings and 49% of greenhouse gas emission savings. These rebound effects are even higher for lower-income consumers who tend to re-spend on more environmentally intensive goods. Yet, the adverse effect could be tempered by purchasing organic goods or re-spending the money on services. In order to reduce the environmental impact of consumption, it could thus be recommended to not only focus on dietary shifts, but rather on the full range of consumer expenditure.

Suggested Citation

  • Grabs, Janina, 2015. "The rebound effects of switching to vegetarianism. A microeconomic analysis of Swedish consumption behavior," Ecological Economics, Elsevier, vol. 116(C), pages 270-279.
  • Handle: RePEc:eee:ecolec:v:116:y:2015:i:c:p:270-279
    DOI: 10.1016/j.ecolecon.2015.04.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800915002153
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2015.04.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lenzen, Manfred & Dey, Christopher J., 2002. "Economic, energy and greenhouse emissions impacts of some consumer choice, technology and government outlay options," Energy Economics, Elsevier, vol. 24(4), pages 377-403, July.
    2. Berners-Lee, M. & Hoolohan, C. & Cammack, H. & Hewitt, C.N., 2012. "The relative greenhouse gas impacts of realistic dietary choices," Energy Policy, Elsevier, vol. 43(C), pages 184-190.
    3. Carlsson-Kanyama, Annika, 1998. "Climate change and dietary choices -- how can emissions of greenhouse gases from food consumption be reduced?," Food Policy, Elsevier, vol. 23(3-4), pages 277-293, November.
    4. Reinders, A. H. M. E. & Vringer, K. & Blok, K., 2003. "The direct and indirect energy requirement of households in the European Union," Energy Policy, Elsevier, vol. 31(2), pages 139-153, January.
    5. González, Alejandro D. & Frostell, Björn & Carlsson-Kanyama, Annika, 2011. "Protein efficiency per unit energy and per unit greenhouse gas emissions: Potential contribution of diet choices to climate change mitigation," Food Policy, Elsevier, vol. 36(5), pages 562-570, October.
    6. Lusk, Jayson L. & Norwood, F. Bailey, 2009. "Some Economic Benefits and Costs of Vegetarianism," Agricultural and Resource Economics Review, Cambridge University Press, vol. 38(2), pages 109-124, October.
    7. Drewnowski, A. & Darmon, N. & Briend, A., 2004. "Replacing fats and sweets with vegetables and fruits - A question of cost," American Journal of Public Health, American Public Health Association, vol. 94(9), pages 1555-1559.
    8. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2014. "Who rebounds most? Estimating direct and indirect rebound effects for different UK socioeconomic groups," Ecological Economics, Elsevier, vol. 106(C), pages 12-32.
    9. Druckman, Angela & Chitnis, Mona & Sorrell, Steve & Jackson, Tim, 2011. "Missing carbon reductions? Exploring rebound and backfire effects in UK households," Energy Policy, Elsevier, vol. 39(6), pages 3572-3581, June.
    10. Alfredsson, E.C., 2004. "“Green” consumption—no solution for climate change," Energy, Elsevier, vol. 29(4), pages 513-524.
    11. Deaton, Angus S & Muellbauer, John, 1980. "An Almost Ideal Demand System," American Economic Review, American Economic Association, vol. 70(3), pages 312-326, June.
    12. Murray, Cameron K., 2013. "What if consumers decided to all ‘go green’? Environmental rebound effects from consumption decisions," Energy Policy, Elsevier, vol. 54(C), pages 240-256.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Francisco Pais & António Cardoso Marques & José Alberto Fuinhas, 2022. "The cost of healthier and more sustainable food choices: Do plant-based consumers spend more on food?," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-21, December.
    2. Vita, Gibran & Ivanova, Diana & Dumitru, Adina & Mira, Ricardo García & Carrus, Giuseppe & Stadler, Konstantin & Krause, Karen & Wood, Richard & Hertwich, Edgar, 2019. "Happier with less? Members of European environmental grassroots initiatives reconcile lower carbon footprints with higher life satisfaction and income increases," SocArXiv 3at5z, Center for Open Science.
    3. David Font Vivanco & Serenella Sala & Will McDowall, 2018. "Roadmap to Rebound: How to Address Rebound Effects from Resource Efficiency Policy," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
    4. Bjelle, Eivind Lekve & Wiebe, Kirsten S. & Többen, Johannes & Tisserant, Alexandre & Ivanova, Diana & Vita, Gibran & Wood, Richard, 2021. "Future changes in consumption: The income effect on greenhouse gas emissions," Energy Economics, Elsevier, vol. 95(C).
    5. Li, Shaoting & Chen, Xuan & Ren, Yanjun & Glauben, Thomas, 2024. "The impact of demographic dynamics on food consumption and its environmental outcomes: Evidence from China," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 23(2), pages 414-429.
    6. Bonnet, Céline & Bouamra-Mechemache, Zohra & Réquillart, Vincent & Treich, Nicolas, 2020. "Viewpoint: Regulating meat consumption to improve health, the environment and animal welfare," Food Policy, Elsevier, vol. 97(C).
    7. Nicolas Treich, 2018. "Veganomics : vers une approche économique du véganisme ?," Revue française d'économie, Presses de Sciences-Po, vol. 0(4), pages 3-48.
    8. Tamar Meshulam & David Font‐Vivanco & Vered Blass & Tamar Makov, 2023. "Sharing economy rebound: The case of peer‐to‐peer sharing of food waste," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 882-895, June.
    9. Colmenares, Gloria & Löschel, Andreas & Madlener, Reinhard, 2019. "The rebound effect and its representation in energy and climate models," CAWM Discussion Papers 106, University of Münster, Münster Center for Economic Policy (MEP).
    10. Catherine Graves & Katy Roelich, 2021. "Psychological Barriers to Pro-Environmental Behaviour Change: A Review of Meat Consumption Behaviours," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    11. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    12. Dirk-Jan van de Ven & Mikel González-Eguino & Iñaki Arto, 2018. "The potential of behavioural change for climate change mitigation: a case study for the European Union," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(6), pages 853-886, August.
    13. Shewmake, Sharon & Okrent, Abigail & Thabrew, Lanka & Vandenbergh, Michael, 2015. "Predicting consumer demand responses to carbon labels," Ecological Economics, Elsevier, vol. 119(C), pages 168-180.
    14. Atsushi Watabe & Alice Marie Yamabe-Ledoux, 2023. "Low-Carbon Lifestyles beyond Decarbonisation: Toward a More Creative Use of the Carbon Footprinting Method," Sustainability, MDPI, vol. 15(5), pages 1-28, March.
    15. Daniel Francisco Pais & António Cardoso Marques & José Alberto Fuinhas, 2023. "How to Promote Healthier and More Sustainable Food Choices: The Case of Portugal," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    16. Maren Birkenstock & Nobert Röder & Silke Thiele & Michael Schmitz, 2019. "Eine moderne, umweltfreundliche und ethische Agrarpolitik – Ziele und Instrumente [The Reform of the Common European Agricultural Policy - An Opportunity for Effective Agri-environmental Policy Ins," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 99(10), pages 675-686, October.
    17. Diletta Acuti & Marta Pizzetti & Sara Dolnicar, 2022. "When sustainability backfires : A review on the unintended negative side-effects of product and service sustainability on consumer behavior," Post-Print hal-04381310, HAL.
    18. Rashmit S. Arora & Daniel A. Brent & Edward C. Jaenicke, 2020. "Is India Ready for Alt-Meat? Preferences and Willingness to Pay for Meat Alternatives," Sustainability, MDPI, vol. 12(11), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chitnis, Mona & Sorrell, Steve, 2015. "Living up to expectations: Estimating direct and indirect rebound effects for UK households," Energy Economics, Elsevier, vol. 52(S1), pages 100-116.
    2. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2014. "Who rebounds most? Estimating direct and indirect rebound effects for different UK socioeconomic groups," Ecological Economics, Elsevier, vol. 106(C), pages 12-32.
    3. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    4. Dogbe, Wisdom, 2022. "Implications of increasing fruits and vegetable consumption in Scotland," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321232, Agricultural Economics Society - AES.
    5. Figus, Gioele & Turner, Karen & McGregor, Peter & Katris, Antonios, 2017. "Making the case for supporting broad energy efficiency programmes: Impacts on household incomes and other economic benefits," Energy Policy, Elsevier, vol. 111(C), pages 157-165.
    6. Antal, Miklós & van den Bergh, Jeroen C.J.M., 2014. "Re-spending rebound: A macro-level assessment for OECD countries and emerging economies," Energy Policy, Elsevier, vol. 68(C), pages 585-590.
    7. Murray, Cameron K., 2013. "What if consumers decided to all ‘go green’? Environmental rebound effects from consumption decisions," Energy Policy, Elsevier, vol. 54(C), pages 240-256.
    8. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2013. "Turning lights into flights: Estimating direct and indirect rebound effects for UK households," Energy Policy, Elsevier, vol. 55(C), pages 234-250.
    9. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    10. Hediger, Cécile & Farsi, Mehdi & Weber, Sylvain, 2018. "Turn It Up and Open the Window: On the Rebound Effects in Residential Heating," Ecological Economics, Elsevier, vol. 149(C), pages 21-39.
    11. Wisdom Dogbe & Cesar Revoredo-Giha, 2021. "Nutritional and Environmental Assessment of Increasing the Content of Fruit and Vegetables in the UK Diet," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    12. Kok, Rixt & Benders, Rene M.J. & Moll, Henri C., 2006. "Measuring the environmental load of household consumption using some methods based on input-output energy analysis: A comparison of methods and a discussion of results," Energy Policy, Elsevier, vol. 34(17), pages 2744-2761, November.
    13. Moz-Christofoletti, Maria Alice & Pereda, Paula Carvalho, 2021. "Distributional welfare and emission effects of energy tax policies in Brazil," Energy Economics, Elsevier, vol. 104(C).
    14. Tamar Meshulam & David Font‐Vivanco & Vered Blass & Tamar Makov, 2023. "Sharing economy rebound: The case of peer‐to‐peer sharing of food waste," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 882-895, June.
    15. Hamamoto, Mitsutsugu, 2019. "An empirical study on the behavior of hybrid-electric vehicle purchasers," Energy Policy, Elsevier, vol. 125(C), pages 286-292.
    16. Murray, Cameron K, 2011. "Income dependent direct and indirect rebound effects from ’green’ consumption choices in Australia," MPRA Paper 34973, University Library of Munich, Germany.
    17. Underwood, Anthony & Fremstad, Anders, 2018. "Does sharing backfire? A decomposition of household and urban economies in CO2 emissions," Energy Policy, Elsevier, vol. 123(C), pages 404-413.
    18. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    19. Chen, Qian & Zha, Donglan & Wang, Lijun & Yang, Guanglei, 2022. "The direct CO2 rebound effect in households: Evidence from China's provinces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Mona Chitnis, Roger Fouquet, and Steve Sorrell, 2020. "Rebound Effects for Household Energy Services in the UK," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 31-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:116:y:2015:i:c:p:270-279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.