IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v50y2019ics1062940819301962.html
   My bibliography  Save this article

Pricing European continuous-installment strangle options

Author

Listed:
  • Jeon, Junkee
  • Kim, Geonwoo

Abstract

This paper investigates the valuation of European continuous-installment strangle options written on dividend-paying underlying assets in the standard Black-Scholes framework. In this pricing problem, the premium of the strangle option is paid continuously instead of up-front. Since the holder of this option has the right to surrender installment payments at any time, the valuation of installment strangle option can be formulated as an optimal stopping problem with two surrender boundaries. Based on the Mellin transform approaches, we derive the integral equation representations for the value function and the two optimal surrender boundaries. By using the recursive integration method, we obtain efficiently the numerical solution for the integral equations and illustrate the optimal surrender boundaries with respect to the significant parameters.

Suggested Citation

  • Jeon, Junkee & Kim, Geonwoo, 2019. "Pricing European continuous-installment strangle options," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
  • Handle: RePEc:eee:ecofin:v:50:y:2019:i:c:s1062940819301962
    DOI: 10.1016/j.najef.2019.101049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940819301962
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2019.101049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jing-Zhi Huang & Marti G. Subrahmanyam & G. George Yu, 1999. "Pricing And Hedging American Options: A Recursive Integration Method," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar, chapter 8, pages 219-239, World Scientific Publishing Co. Pte. Ltd..
    2. Pierangelo Ciurlia & Ilir Roko, 2005. "Valuation of American Continuous-Installment Options," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 143-165, February.
    3. Ji-Hun Yoon, 2014. "Mellin Transform Method for European Option Pricing with Hull-White Stochastic Interest Rate," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, October.
    4. Kim, Geonwoo & Koo, Eunho, 2016. "Closed-form pricing formula for exchange option with credit risk," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 221-227.
    5. Franck Moraux, 2009. "On perpetual American strangles," Post-Print halshs-00393811, HAL.
    6. Jeon, Junkee & Kim, Geonwoo, 2019. "Pricing of vulnerable options with early counterparty credit risk," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 645-656.
    7. Laminou Abdou, Souleymane & Moraux, Franck, 2016. "Pricing and hedging American and hybrid strangles with finite maturity," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 112-125.
    8. Kimura, Toshikazu, 2010. "Valuing continuous-installment options," European Journal of Operational Research, Elsevier, vol. 201(1), pages 222-230, February.
    9. Andrew Ziogas & Carl Chiarella, 2005. "Pricing American Options under Stochastic Volatility," Computing in Economics and Finance 2005 77, Society for Computational Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeon, Junkee & Kim, Geonwoo, 2022. "Pricing European continuous-installment currency options with mean-reversion," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    2. Junkee Jeon & Geonwoo Kim, 2022. "Analytic Valuation Formula for American Strangle Option in the Mean-Reversion Environment," Mathematics, MDPI, vol. 10(15), pages 1-19, July.
    3. Zhou Yang & Junkee Jeon, 2023. "A Problem of Finite-Horizon Optimal Switching and Stochastic Control for Utility Maximization," Papers 2309.12588, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeon, Junkee & Kim, Geonwoo, 2022. "Pricing European continuous-installment currency options with mean-reversion," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    2. Kim, Donghyun & Kim, Geonwoo & Yoon, Ji-Hun, 2022. "Pricing of vulnerable exchange options with early counterparty credit risk," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    3. Junkee Jeon & Geonwoo Kim, 2020. "An Integral Equation Approach to the Irreversible Investment Problem with a Finite Horizon," Mathematics, MDPI, vol. 8(11), pages 1-10, November.
    4. Jeon, Junkee & Kim, Geonwoo, 2019. "An integral equation approach for optimal investment policies with partial reversibility," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 73-78.
    5. Geonwoo Kim, 2020. "Valuation of Exchange Option with Credit Risk in a Hybrid Model," Mathematics, MDPI, vol. 8(11), pages 1-11, November.
    6. Laminou Abdou, Souleymane & Moraux, Franck, 2016. "Pricing and hedging American and hybrid strangles with finite maturity," Journal of Banking & Finance, Elsevier, vol. 62(C), pages 112-125.
    7. Joanna Goard & Mohammed AbaOud, 2022. "Pricing European and American Installment Options," Mathematics, MDPI, vol. 10(19), pages 1-27, September.
    8. Donghyun Kim & Ji-Hun Yoon, 2023. "Analytic Method for Pricing Vulnerable External Barrier Options," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1561-1591, April.
    9. Jeon, Jaegi & Kim, Geonwoo & Huh, Jeonggyu, 2021. "An asymptotic expansion approach to the valuation of vulnerable options under a multiscale stochastic volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    10. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 12, July-Dece.
    11. Jeon, Junkee & Kim, Geonwoo, 2019. "Pricing of vulnerable options with early counterparty credit risk," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 645-656.
    12. Zaevski, Tsvetelin S. & Kounchev, Ognyan & Savov, Mladen, 2019. "Two frameworks for pricing defaultable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 309-319.
    13. Liu, Yanchu & Cui, Zhenyu & Zhang, Ning, 2016. "Integral representation of vega for American put options," Finance Research Letters, Elsevier, vol. 19(C), pages 204-208.
    14. Wang, Xingchun, 2020. "Valuation of Asian options with default risk under GARCH models," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 27-40.
    15. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    16. O. Samimi & Z. Mardani & S. Sharafpour & F. Mehrdoust, 2017. "LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 173-187, August.
    17. Xuemei Gao & Dongya Deng & Yue Shan, 2014. "Lattice Methods for Pricing American Strangles with Two-Dimensional Stochastic Volatility Models," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-6, April.
    18. Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.
    19. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    20. Pressacco, Flavio & Gaudenzi, Marcellino & Zanette, Antonino & Ziani, Laura, 2008. "New insights on testing the efficiency of methods of pricing and hedging American options," European Journal of Operational Research, Elsevier, vol. 185(1), pages 235-254, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:50:y:2019:i:c:s1062940819301962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.