IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v39y2017icp38-55.html
   My bibliography  Save this article

Pair trading based on quantile forecasting of smooth transition GARCH models

Author

Listed:
  • Chen, Cathy W.S.
  • Wang, Zona
  • Sriboonchitta, Songsak
  • Lee, Sangyeol

Abstract

Pair trading is a statistical arbitrage strategy used on similar assets with dissimilar valuations. We utilize smooth transition heteroskedastic models with a second-order logistic function to generate trading entry and exit signals and suggest two pair trading strategies: the first uses the upper and lower threshold values in the proposed model as trading entry and exit signals, while the second strategy instead takes one-step-ahead quantile forecasts obtained from the same model. We employ Bayesian Markov chain Monte Carlo sampling methods for updating the estimates and quantile forecasts. As an illustration, we conduct a simulation study and empirical analysis of the daily stock returns of 36 stocks from U.S. stock markets. We use the minimum square distance method to select ten stock pairs, choose additional five pairs consisting of two companies in the same industrial sector, and then finally consider pair trading profits for two out-of-sample periods in 2014 within a six-month time frame as well as for the entire year. The proposed strategies yield average annualized returns of at least 35.5% without a transaction cost and at least 18.4% with a transaction cost.

Suggested Citation

  • Chen, Cathy W.S. & Wang, Zona & Sriboonchitta, Songsak & Lee, Sangyeol, 2017. "Pair trading based on quantile forecasting of smooth transition GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 39(C), pages 38-55.
  • Handle: RePEc:eee:ecofin:v:39:y:2017:i:c:p:38-55
    DOI: 10.1016/j.najef.2016.10.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940816301358
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2016.10.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    2. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    3. Robert Elliott & John Van Der Hoek & William Malcolm, 2005. "Pairs trading," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 271-276.
    4. K. S. Chan & H. Tong, 1986. "On Estimating Thresholds In Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(3), pages 179-190, May.
    5. Jansen, Eilev S & Terasvirta, Timo, 1996. "Testing Parameter Constancy and Super Exogeneity in Econometric Equations," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(4), pages 735-763, November.
    6. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    9. Paul Berhanu Girma & Albert S. Paulson, 1999. "Risk arbitrage opportunities in petroleum futures spreads," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(8), pages 931-955, December.
    10. Chen, Cathy W.S. & So, Mike K.P., 2006. "On a threshold heteroscedastic model," International Journal of Forecasting, Elsevier, vol. 22(1), pages 73-89.
    11. Jun Liu & Allan Timmermann, 2013. "Optimal Convergence Trade Strategies," The Review of Financial Studies, Society for Financial Studies, vol. 26(4), pages 1048-1086.
    12. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Day Yang Liu & Ming Chen Chun & Yi Kai Su, 2021. "The impacts of Covid-19 pandemic on the smooth transition dynamics of stock market index volatilities for the Four Asian Tigers and Japan," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 10(4), pages 183-194, June.
    2. Day-Yang Liu & Chun-Ming Chen & Yi-Kai Su, 2020. "The Impact of COVID-19 Pandemic on the Smooth Transition Dynamics of Broad-based Indices Volatilities in Taiwan," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 10(5), pages 1-14.
    3. Lin, Tsai-Yu & Chen, Cathy W.S. & Syu, Fong-Yi, 2021. "Multi-asset pair-trading strategy: A statistical learning approach," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    4. Yi-Kai Su & Kae-Yih Tzeng & Chun-Jan Tseng & Cheng-Hsien Lin, 2024. "The Influence of Defense Industry Development Act on the Smooth Transition Dynamics of Stock Volatilities of Defense Industry," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 14(3), pages 1-7.
    5. Jolanta Tamošaitienė & Vahidreza Yousefi & Hamed Tabasi, 2021. "Project Portfolio Construction Using Extreme Value Theory," Sustainability, MDPI, vol. 13(2), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. CHEN, Cathy W.S. & WENG, Monica M.C. & WATANABE, Toshiaki & 渡部, 渡部, 2015. "Employing Bayesian Forecasting of Value-at-Risk to Determine an Appropriate Model for Risk Management," Discussion paper series HIAS-E-16, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    2. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    3. Cathy Chen & Simon Lin & Philip Yu, 2012. "Smooth Transition Quantile Capital Asset Pricing Models with Heteroscedasticity," Computational Economics, Springer;Society for Computational Economics, vol. 40(1), pages 19-48, June.
    4. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    5. Gorgi, P. & Koopman, S.J., 2023. "Beta observation-driven models with exogenous regressors: A joint analysis of realized correlation and leverage effects," Journal of Econometrics, Elsevier, vol. 237(2).
    6. Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871, September.
    7. Elyasiani, Elyas & Mansur, Iqbal, 1998. "Sensitivity of the bank stock returns distribution to changes in the level and volatility of interest rate: A GARCH-M model," Journal of Banking & Finance, Elsevier, vol. 22(5), pages 535-563, May.
    8. Wang, Kai Y.K. & Chen, Cathy W.S. & So, Mike K.P., 2023. "Quantile three-factor model with heteroskedasticity, skewness, and leptokurtosis," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    9. Ben Naceur, Hassen, 2014. "Stock Market Indexes: A random walk test with ARCH (q) disturbances," MPRA Paper 78978, University Library of Munich, Germany.
    10. Pariyada Sukcharoensin, 2013. "Time-Varying Market, Interest Rate and Exchange Rate Risks of Thai Commercial Banks," Asian Academy of Management Journal of Accounting and Finance (AAMJAF), Penerbit Universiti Sains Malaysia, vol. 9(1), pages 25-45.
    11. Chen, Cathy W.S. & Yang, Ming Jing & Gerlach, Richard & Jim Lo, H., 2006. "The asymmetric reactions of mean and volatility of stock returns to domestic and international information based on a four-regime double-threshold GARCH model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 401-418.
    12. Kaiser, Thomas, 1996. "One-factor-Garch models for German stocks: Estimation and forecasting," Tübinger Diskussionsbeiträge 87, University of Tübingen, School of Business and Economics.
    13. Robert J Bianchi & Adam E Clements & Michael E Drew, 2009. "HACking at Non-linearity: Evidence from Stocks and Bonds," School of Economics and Finance Discussion Papers and Working Papers Series 244, School of Economics and Finance, Queensland University of Technology.
    14. LUBRANO, Michel, 1998. "Smooth transition GARCH models: a Bayesian perspective," LIDAM Discussion Papers CORE 1998066, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    15. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, September.
    16. Dimson, Elroy & Mussavian, Massoud, 1999. "Three centuries of asset pricing," Journal of Banking & Finance, Elsevier, vol. 23(12), pages 1745-1769, December.
    17. Meitz, Mika & Saikkonen, Pentti, 2011. "Parameter Estimation In Nonlinear Ar–Garch Models," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1236-1278, December.
    18. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    19. Thomas C. Chiang & Cathy W.S. Chen & Mike K.P. So, 2007. "Asymmetric Return and Volatility Responses to Composite News from Stock Markets," Multinational Finance Journal, Multinational Finance Journal, vol. 11(3-4), pages 179-210, September.
    20. Timo Teräsvirta, 2017. "Nonlinear models in macroeconometrics," CREATES Research Papers 2017-32, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Keywords

    Pair trading; Bayesian inference; Smooth transition GARCH model; Second-order logistic transition function; Markov chain Monte Carlo methods; Out-of-sample forecasts; Quantile forecasting;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:39:y:2017:i:c:p:38-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.