IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v67y2017icp34-44.html
   My bibliography  Save this article

Ratings based Inference and Credit Risk: Detecting likely-to-fail Banks with the PC-Mahalanobis Method

Author

Listed:
  • Pompella, Maurizio
  • Dicanio, Antonio

Abstract

This paper proposes a new approach of how to test the validity of bank ratings assigned by Rating Agencies. An innovative Early Warning System (EWS) is introduced that allows to unveil prodromic signals of instability for selected individual banks, and possibly forecast bank failures. A forward-looking, credit risk model that is based on financial ratios is designed to assess the financial position of rated banks. This approach allows to discriminate between banks that are in a stable, financially healthy position, and banks that are possibly going to become insolvent (likely-to-fail banks). Our empirical results are compared with the official ratings assigned by RAs to the same intermediaries. Our findings reveal incoherent positions and possibly incorrectly rated banks. We argue that our method can be easily implemented by financial regulators.

Suggested Citation

  • Pompella, Maurizio & Dicanio, Antonio, 2017. "Ratings based Inference and Credit Risk: Detecting likely-to-fail Banks with the PC-Mahalanobis Method," Economic Modelling, Elsevier, vol. 67(C), pages 34-44.
  • Handle: RePEc:eee:ecmode:v:67:y:2017:i:c:p:34-44
    DOI: 10.1016/j.econmod.2016.08.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S026499931630270X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2016.08.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Castro, Vítor, 2013. "Macroeconomic determinants of the credit risk in the banking system: The case of the GIPSI," Economic Modelling, Elsevier, vol. 31(C), pages 672-683.
    2. Duffee, Gregory R, 1999. "Estimating the Price of Default Risk," The Review of Financial Studies, Society for Financial Studies, vol. 12(1), pages 197-226.
    3. Williams, Gwion & Alsakka, Rasha & ap Gwilym, Owain, 2013. "The impact of sovereign rating actions on bank ratings in emerging markets," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 563-577.
    4. Betz, Frank & Oprică, Silviu & Peltonen, Tuomas A. & Sarlin, Peter, 2014. "Predicting distress in European banks," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 225-241.
    5. Rebel Cole & Lawrence White, 2012. "Déjà Vu All Over Again: The Causes of U.S. Commercial Bank Failures This Time Around," Journal of Financial Services Research, Springer;Western Finance Association, vol. 42(1), pages 5-29, October.
    6. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    7. Periklis Gogas & Theophilos Papadimitriou & Anna Agrapetidou, 2014. "Forecasting bank credit ratings," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 15(2), pages 195-209, March.
    8. Robert A. Jarrow & David Lando & Stuart M. Turnbull, 2008. "A Markov Model for the Term Structure of Credit Risk Spreads," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 18, pages 411-453, World Scientific Publishing Co. Pte. Ltd..
    9. Patrick Roy, 2013. "Is There a Difference Between Solicited and Unsolicited Bank Ratings and, If So, Why?," Journal of Financial Services Research, Springer;Western Finance Association, vol. 44(1), pages 53-86, August.
    10. Öğüt, Hulisi & Doğanay, M. Mete & Ceylan, Nildağ Başak & Aktaş, Ramazan, 2012. "Prediction of bank financial strength ratings: The case of Turkey," Economic Modelling, Elsevier, vol. 29(3), pages 632-640.
    11. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    12. Kolari, James & Glennon, Dennis & Shin, Hwan & Caputo, Michele, 2002. "Predicting large US commercial bank failures," Journal of Economics and Business, Elsevier, vol. 54(4), pages 361-387.
    13. Salvador, Carlos & Pastor, Jose Manuel & Fernández de Guevara, Juan, 2014. "Impact of the subprime crisis on bank ratings: The effect of the hardening of rating policies and worsening of solvency," Journal of Financial Stability, Elsevier, vol. 11(C), pages 13-31.
    14. Davis, E. Philip & Karim, Dilruba, 2008. "Comparing early warning systems for banking crises," Journal of Financial Stability, Elsevier, vol. 4(2), pages 89-120, June.
    15. Sahut, Jean-Michel & Mili, Mehdi, 2011. "Banking distress in MENA countries and the role of mergers as a strategic policy to resolve distress," Economic Modelling, Elsevier, vol. 28(1), pages 138-146.
    16. Qin, Xiao & Luo, Chengying, 2014. "Capital account openness and early warning system for banking crises in G20 countries," Economic Modelling, Elsevier, vol. 39(C), pages 190-194.
    17. Hulisi Ögüt & M. Mete Doganay & Nildag Basak Ceylan & Ramazan Aktas, 2012. "Predicting Bank Financial Strength Ratings in an Emerging Economy: The Case of Turkey," Working Papers 740, Economic Research Forum, revised 2012.
    18. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    19. Alessandro Santoni & Barbara Arbia, 2013. "Assessing Rating Agencies' Ability to Predict Bank Bankruptcy – The Lace Financial Case," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 42(2), pages 203-215, July.
    20. Jin, Justin Yiqiang & Kanagaretnam, Kiridaran & Lobo, Gerald J. & Mathieu, Robert, 2013. "Impact of FDICIA internal controls on bank risk taking," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 614-624.
    21. DeYoung, Robert & Torna, Gökhan, 2013. "Nontraditional banking activities and bank failures during the financial crisis," Journal of Financial Intermediation, Elsevier, vol. 22(3), pages 397-421.
    22. Caporale, Guglielmo Maria & Matousek, Roman & Stewart, Chris, 2012. "Ratings assignments: Lessons from international banks," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1593-1606.
    23. Lin, Ching-Chung & Yang, Shou-Lin, 2016. "Bank fundamentals, economic conditions, and bank failures in East Asian countries," Economic Modelling, Elsevier, vol. 52(PB), pages 960-966.
    24. Kato, Ryo & Tsuruga, Takayuki, 2016. "The safer, the riskier: A model of financial instability and bank leverage," Economic Modelling, Elsevier, vol. 52(PA), pages 71-77.
    25. Periklis Gogas & Theophilos Papadimitriou & Anna Agrapetidou, 2014. "Forecasting bank credit ratings," Journal of Risk Finance, Emerald Group Publishing, vol. 15(2), pages 195-209, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Guerra & Mauro Castelli, 2021. "Machine Learning Applied to Banking Supervision a Literature Review," Risks, MDPI, vol. 9(7), pages 1-24, July.
    2. Guerra, Pedro & Castelli, Mauro & Côrte-Real, Nadine, 2022. "Machine learning for liquidity risk modelling: A supervisory perspective," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 175-187.
    3. Alexander M. Karminsky & Ella Khromova, 2018. "Increase of banks’ credit risks forecasting power by the usage of the set of alternative models," Russian Journal of Economics, ARPHA Platform, vol. 4(2), pages 155-174, June.
    4. Aggarwal, Nidhi & Singh, Manish K. & Thomas, Susan, 2023. "Do decreases in Distance-to-Default predict rating downgrades?," Economic Modelling, Elsevier, vol. 129(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhivaikina, A. & Peresetsky, A., 2017. "Russian Bank Credit Ratings and Bank License Withdrawal 2012-2016," Journal of the New Economic Association, New Economic Association, vol. 36(4), pages 49-80.
    2. Valdir Domeneghetti & Fabiano Guasti Lima, 2019. "Strategic direction re-evaluation of bank ratings in Brazil," Economics Bulletin, AccessEcon, vol. 39(2), pages 1336-1347.
    3. Parnes, Dror & Gormus, Alper, 2024. "Prescreening bank failures with K-means clustering: Pros and cons," International Review of Financial Analysis, Elsevier, vol. 93(C).
    4. Papanikolaou, Nikolaos I., 2018. "To be bailed out or to be left to fail? A dynamic competing risks hazard analysis," Journal of Financial Stability, Elsevier, vol. 34(C), pages 61-85.
    5. Manthoulis, Georgios & Doumpos, Michalis & Zopounidis, Constantin & Galariotis, Emilios, 2020. "An ordinal classification framework for bank failure prediction: Methodology and empirical evidence for US banks," European Journal of Operational Research, Elsevier, vol. 282(2), pages 786-801.
    6. Citterio, Alberto, 2024. "Bank failure prediction models: Review and outlook," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    7. Giampaolo Gabbi & Andrea Sironi, 2005. "Which factors affect corporate bonds pricing? Empirical evidence from eurobonds primary market spreads," The European Journal of Finance, Taylor & Francis Journals, vol. 11(1), pages 59-74.
    8. Chava, Sudheer & Jarrow, Robert, 2008. "Modeling loan commitments," Finance Research Letters, Elsevier, vol. 5(1), pages 11-20, March.
    9. SOLNIK, Bruno & COLLIN-DUFRESNE, Pierre, 2000. "On the term structure of default premia in the Swap and Libor markets," HEC Research Papers Series 704, HEC Paris.
    10. Zhou, Chunsheng, 2001. "The term structure of credit spreads with jump risk," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 2015-2040, November.
    11. Vink, Dennis, 2007. "An Empirical Analysis of Asset-Backed Securitization," MPRA Paper 10382, University Library of Munich, Germany, revised 25 Aug 2008.
    12. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
    13. Tsung-Kang Chen & Hsien-Hsing Liao & Chia-Wu Lu, 2011. "A flow-based corporate credit model," Review of Quantitative Finance and Accounting, Springer, vol. 36(4), pages 517-532, May.
    14. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    15. Tomoaki Shouda, 2005. "Dynamical analysis of corporate bonds based on the yield spread term-quality surface," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(4), pages 307-332, December.
    16. Chiaramonte, Laura & Casu, Barbara, 2017. "Capital and liquidity ratios and financial distress. Evidence from the European banking industry," The British Accounting Review, Elsevier, vol. 49(2), pages 138-161.
    17. Xin Guo & Robert A. Jarrow & Yan Zeng, 2009. "Credit Risk Models with Incomplete Information," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 320-332, May.
    18. Betz, Frank & Oprică, Silviu & Peltonen, Tuomas A. & Sarlin, Peter, 2014. "Predicting distress in European banks," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 225-241.
    19. Anggraeni, Anggraeni & Mongid, Abdul & Suhartono,, 2020. "Prediction Models for Bank Failure: ASEAN Countries," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 54(2), pages 41-51.
    20. Ericsson, Jan & Reneby, Joel, 2003. "Valuing Corporate Liabilities," SIFR Research Report Series 15, Institute for Financial Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:67:y:2017:i:c:p:34-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.