IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v29y2012i3p908-916.html
   My bibliography  Save this article

South African stock return predictability in the context data mining: The role of financial variables and international stock returns

Author

Listed:
  • Gupta, Rangan
  • Modise, Mampho P.

Abstract

In this paper, we examine the predictive ability, both in-sample and the out-of-sample, for South African stock returns using a number of financial variables, based on monthly data with an in-sample period covering 1990:01 to 1996:12 and the out-of-sample period of 1997:01 to 2010:04. We use the t-statistic corresponding to the slope coefficient in a predictive regression model for in-sample predictions, while for the out-of-sample, the MSE-F and the ENC-NEW tests statistics with good power properties were utilised. To guard against data mining, a bootstrap procedure was employed for calculating the critical values of both the in-sample and out-of-sample test statistics. Furthermore, we use a procedure that combines in-sample general-to-specific model selection with out-of-sample tests of predictive ability to further analyse the predictive power of each financial variable. Our results show that, for the in-sample test statistic, only the stock returns for our major trading partners have predictive power at certain short and long run horizons. For the out-of-sample tests, the Treasury bill rate and the term spread together with the stock returns for our major trading partners show predictive power both at short and long run horizons. When accounting for data mining, the maximal out-of-sample test statistics become insignificant from 6-months onward suggesting that the evidence of the out-of-sample predictability at longer horizons is due to data mining. The general-to-specific model shows that valuation ratios contain very useful information that explains the behaviour of stock returns, despite their inability to predict stock return at any horizon. The model also highlights the role of multiple variables in predicting stock returns at medium- to long run horizons.

Suggested Citation

  • Gupta, Rangan & Modise, Mampho P., 2012. "South African stock return predictability in the context data mining: The role of financial variables and international stock returns," Economic Modelling, Elsevier, vol. 29(3), pages 908-916.
  • Handle: RePEc:eee:ecmode:v:29:y:2012:i:3:p:908-916
    DOI: 10.1016/j.econmod.2011.12.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999311002902
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2011.12.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kilian, Lutz, 1999. "Exchange Rates and Monetary Fundamentals: What Do We Learn from Long-Horizon Regressions?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 491-510, Sept.-Oct.
    2. repec:bla:jfinan:v:53:y:1998:i:5:p:1563-1587 is not listed on IDEAS
    3. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    4. Martin Lettau & Sydney C. Ludvigson & Charles Steindel, 2002. "Monetary policy transmission through the consumption-wealth channel," Economic Policy Review, Federal Reserve Bank of New York, vol. 8(May), pages 117-133.
    5. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    6. Efthymios Pavlidis & I Paya & D Peel & A M Spiru, 2009. "Bubbles in House Prices and their Impact on Consumption: Evidence for the US," Working Papers 601552, Lancaster University Management School, Economics Department.
    7. Andrew Ang & Geert Bekaert, 2007. "Stock Return Predictability: Is it There?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
    8. Martin Lettau & Sydney C. Ludvigson, 2004. "Understanding Trend and Cycle in Asset Values: Reevaluating the Wealth Effect on Consumption," American Economic Review, American Economic Association, vol. 94(1), pages 276-299, March.
    9. Sonali Das & Rangan Gupta & Patrick T Kanda, 2010. "Bubbles in South African House Prices and their Impact on Consumption," Working Papers 201017, University of Pretoria, Department of Economics.
    10. Kothari, S. P. & Shanken, Jay, 1997. "Book-to-market, dividend yield, and expected market returns: A time-series analysis," Journal of Financial Economics, Elsevier, vol. 44(2), pages 169-203, May.
    11. Nicholas Apergis & Stephen M. Miller, 2005. "Consumption asymmetry and the stock market: New evidence through a threshold adjustment model," Working papers 2005-08, University of Connecticut, Department of Economics.
    12. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    13. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    14. Nicholas Apergis & Stephen M. Miller, 2005. "Resurrecting the Wealth Effect on Consumption: Further Analysis and Extension," Working papers 2005-57, University of Connecticut, Department of Economics.
    15. Martin Lettau & Sydney Ludvigson, 2001. "Consumption, Aggregate Wealth, and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, June.
    16. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423, October.
    17. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    18. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    19. Atsushi Inoue & Lutz Kilian, 2005. "In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use?," Econometric Reviews, Taylor & Francis Journals, vol. 23(4), pages 371-402.
    20. Apergis, Nicholas & Miller, Stephen M., 2006. "Consumption asymmetry and the stock market: Empirical evidence," Economics Letters, Elsevier, vol. 93(3), pages 337-342, December.
    21. David E. Rapach & Jack K. Strauss, 2006. "The long-run relationship between consumption and housing wealth in the Eighth District states," Regional Economic Development, Federal Reserve Bank of St. Louis, issue Oct, pages 140-147.
    22. Kirby, Chris, 1997. "Measuring the Predictable Variation in Stock and Bond Returns," The Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 579-630.
    23. Rapach, David E. & Wohar, Mark E. & Rangvid, Jesper, 2005. "Macro variables and international stock return predictability," International Journal of Forecasting, Elsevier, vol. 21(1), pages 137-166.
    24. Nelson, Charles R & Kim, Myung J, 1993. "Predictable Stock Returns: The Role of Small Sample Bias," Journal of Finance, American Finance Association, vol. 48(2), pages 641-661, June.
    25. Rapach, David E. & Wohar, Mark E., 2006. "In-sample vs. out-of-sample tests of stock return predictability in the context of data mining," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 231-247, March.
    26. David E. Rapach & Mark E. Wohar, 2006. "Structural Breaks and Predictive Regression Models of Aggregate U.S. Stock Returns," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 238-274.
    27. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    28. Nicholas Apergis & Stephen M. Miller, 2004. "Consumption Asymmetry and the Stock Market: Further Evidence," Working papers 2004-19, University of Connecticut, Department of Economics.
    29. Rangan Gupta & Mampho P. Modise, 2010. "Valuation Ratios and Stock Price Predictability in South Africa: Is it there?," Working Papers 201016, University of Pretoria, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gupta, Rangan & Hammoudeh, Shawkat & Modise, Mampho P. & Nguyen, Duc Khuong, 2014. "Can economic uncertainty, financial stress and consumer sentiments predict U.S. equity premium?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 367-378.
    2. Ali Babikir & Henry Mwambi, 2016. "Evaluating the combined forecasts of the dynamic factor model and the artificial neural network model using linear and nonlinear combining methods," Empirical Economics, Springer, vol. 51(4), pages 1541-1556, December.
    3. Apergis, Nicholas & Gupta, Rangan, 2017. "Can (unusual) weather conditions in New York predict South African stock returns?," Research in International Business and Finance, Elsevier, vol. 41(C), pages 377-386.
    4. Bannigidadmath, Deepa & Narayan, Paresh Kumar, 2016. "Stock return predictability and determinants of predictability and profits," Emerging Markets Review, Elsevier, vol. 26(C), pages 153-173.
    5. Goodness C. Aye & Mehmet Balcilar & Rangan Gupta, 2017. "International stock return predictability: Is the role of U.S. time-varying?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 44(1), pages 121-146, February.
    6. Gupta, Rangan & Modise, Mampho P., 2013. "Macroeconomic Variables and South African Stock Return Predictability," Economic Modelling, Elsevier, vol. 30(C), pages 612-622.
    7. Babikir, Ali & Gupta, Rangan & Mwabutwa, Chance & Owusu-Sekyere, Emmanuel, 2012. "Structural breaks and GARCH models of stock return volatility: The case of South Africa," Economic Modelling, Elsevier, vol. 29(6), pages 2435-2443.
    8. Bai, Ye & Green, Christopher J., 2020. "Country and industry factors in tests of Capital Asset Pricing Models for partially integrated emerging markets," Economic Modelling, Elsevier, vol. 92(C), pages 180-194.
    9. Narayan, Paresh Kumar & Liu, Ruipeng, 2018. "A new GARCH model with higher moments for stock return predictability," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 93-103.
    10. Chen, Fu-Hsiang & Chi, Der-Jang & Wang, Yi-Cheng, 2015. "Detecting biotechnology industry's earnings management using Bayesian network, principal component analysis, back propagation neural network, and decision tree," Economic Modelling, Elsevier, vol. 46(C), pages 1-10.
    11. Chen-Yin Kuo, 2018. "Are the forecast errors of stock prices related to the degree of accounting conservatism?," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 8(6), pages 1-9.
    12. Liao, Jui-Jung & Shih, Ching-Hui & Chen, Tai-Feng & Hsu, Ming-Fu, 2014. "An ensemble-based model for two-class imbalanced financial problem," Economic Modelling, Elsevier, vol. 37(C), pages 175-183.
    13. Afees A. Salisu & Rangan Gupta, 2021. "Commodity Prices and Forecastability of South African Stock Returns Over a Century: Sentiments versus Fundamentals," Working Papers 202144, University of Pretoria, Department of Economics.
    14. repec:idn:journl:v:1:y:2019:i:sp2:p:1-12 is not listed on IDEAS
    15. Pavitra Dhamija, 2020. "Economic Development and South Africa: 25 Years Analysis (1994 to 2019)," South African Journal of Economics, Economic Society of South Africa, vol. 88(3), pages 298-322, September.
    16. Devpura, Neluka & Narayan, Paresh Kumar & Sharma, Susan Sunila, 2018. "Is stock return predictability time-varying?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 152-172.
    17. Ahmad Hammami & Mohammad Hendijani Zadeh, 2022. "Predicting earnings management through machine learning ensemble classifiers," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1639-1660, December.
    18. Wen, Yi-Chieh & Lin, Philip T. & Li, Bin & Roca, Eduardo, 2015. "Stock return predictability in South Africa: The role of major developed markets," Finance Research Letters, Elsevier, vol. 15(C), pages 257-265.
    19. Narayan, Paresh Kumar & Bannigidadmath, Deepa, 2017. "Does Financial News Predict Stock Returns? New Evidence from Islamic and Non-Islamic Stocks," Pacific-Basin Finance Journal, Elsevier, vol. 42(C), pages 24-45.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gupta, Rangan & Modise, Mampho P., 2013. "Macroeconomic Variables and South African Stock Return Predictability," Economic Modelling, Elsevier, vol. 30(C), pages 612-622.
    2. Rapach, David E. & Wohar, Mark E., 2006. "In-sample vs. out-of-sample tests of stock return predictability in the context of data mining," Journal of Empirical Finance, Elsevier, vol. 13(2), pages 231-247, March.
    3. Rapach, David E. & Wohar, Mark E. & Rangvid, Jesper, 2005. "Macro variables and international stock return predictability," International Journal of Forecasting, Elsevier, vol. 21(1), pages 137-166.
    4. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    5. Chen, Long, 2009. "On the reversal of return and dividend growth predictability: A tale of two periods," Journal of Financial Economics, Elsevier, vol. 92(1), pages 128-151, April.
    6. Neil Kellard & John Nankervis & Fotis Papadimitriou, 2007. "Predicting the UK Equity Premium with Dividend Ratios: An Out-Of-Sample Recursive Residuals Graphical Approach," Money Macro and Finance (MMF) Research Group Conference 2006 129, Money Macro and Finance Research Group.
    7. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    8. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    9. Dladla, Pholile & Malikane, Christopher, 2019. "Stock return predictability: Evidence from a structural model," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 412-424.
    10. GIOT, Pierre & PETITJEAN, Mikael, 2006. "International stock return predictability: statistical evidence and economic significance," LIDAM Discussion Papers CORE 2006088, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    12. Sousa, Ricardo M. & Vivian, Andrew & Wohar, Mark E., 2016. "Predicting asset returns in the BRICS: The role of macroeconomic and fundamental predictors," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 122-143.
    13. Clark, Todd E. & McCracken, Michael W., 2006. "The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1127-1148, August.
    14. David McMillan & Mark Wohar, 2013. "UK stock market predictability: evidence of time variation," Applied Financial Economics, Taylor & Francis Journals, vol. 23(12), pages 1043-1055, June.
    15. Ferreira, Miguel A. & Santa-Clara, Pedro, 2011. "Forecasting stock market returns: The sum of the parts is more than the whole," Journal of Financial Economics, Elsevier, vol. 100(3), pages 514-537, June.
    16. Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2017. "Forecasting market returns: bagging or combining?," International Journal of Forecasting, Elsevier, vol. 33(1), pages 102-120.
    17. Stephan Jank, 2015. "Changes in the Composition of Publicly Traded Firms: Implications for the Dividend-Price Ratio and Return Predictability," Management Science, INFORMS, vol. 61(6), pages 1362-1377, June.
    18. Mark E. Wohar & David E. Rapach, 2007. "Forecasting the recent behavior of US business fixed investment spending: an analysis of competing models This is a significantly revised version of our previous paper, 'Forecasting US Business Fixed ," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 33-51.
    19. Joseph P. Byrne & Dimitris Korobilis & Pinho J. Ribeiro, 2018. "On The Sources Of Uncertainty In Exchange Rate Predictability," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 329-357, February.
    20. Kenneth S. Rogoff & Vania Stavrakeva, 2008. "The Continuing Puzzle of Short Horizon Exchange Rate Forecasting," NBER Working Papers 14071, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Stock return predictability; Financial variables; Nested models; In-sample tests; Out-of-sample tests; Data mining; General-to-specific model selection;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:29:y:2012:i:3:p:908-916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.