IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v27y2010i1p445-453.html
   My bibliography  Save this article

Quantifying South Africa's crude oil import risk: A multi-criteria portfolio model

Author

Listed:
  • Wabiri, Njeri
  • Amusa, Hammed

Abstract

A major consequence of South Africa's strong economic growth since the democratic dispensation of 1994 is the rapid increase in domestic demand for oil energy. With small amounts of proven oil reserves, the rise in oil demand as an energy source has resulted in South Africa's growing dependence on external sources for its domestic crude oil needs. High oil prices, instability in major oil producing regions and the rise in 'oil-nationalism' are major concerns for the security of South Africa's oil supplies. Accordingly, a comprehensive understanding of oil import security risks can serve as a vital guide in formulating any energy policy framework(s) aimed at alleviating the impact of such risks. This study utilises portfolio theory and develops an empirical framework to provide quantitative measures of systematic and specific risks of South Africa's crude oil imports over the period 1994 to 2007. The paper examines the relationship between supply sources diversification and oil energy security risks, and provides an objective evaluation of different import adjustment strategies on South Africa's total crude oil import risks. The results show that a policy of having constant monthly imports from each supply region reduces the specific and systematic risks of the oil import portfolio by an average rate of 71% and 2.9% respectively. Significant reduction in specific risks of South Africa's oil imports is achieved if imports from risky regions (mainly the Middle East) can be diversified to relatively less risky regions of Europe and North America.

Suggested Citation

  • Wabiri, Njeri & Amusa, Hammed, 2010. "Quantifying South Africa's crude oil import risk: A multi-criteria portfolio model," Economic Modelling, Elsevier, vol. 27(1), pages 445-453, January.
  • Handle: RePEc:eee:ecmode:v:27:y:2010:i:1:p:445-453
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264-9993(09)00185-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    2. Wu, Gang & Wei, Yi-Ming & Fan, Ying & Liu, Lan-Cui, 2007. "An empirical analysis of the risk of crude oil imports in China using improved portfolio approach," Energy Policy, Elsevier, vol. 35(8), pages 4190-4199, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlo Andrea Bollino & Philipp Galkin, 2021. "Energy Security and Portfolio Diversification: Conventional and Novel Perspectives," Energies, MDPI, vol. 14(14), pages 1-24, July.
    2. Sun, Xiaolei & Li, Jianping & Tang, Ling & Wu, Dengsheng, 2012. "Identifying the risk-return tradeoff and exploring the dynamic risk exposure of country portfolio of the FSU's oil economies," Economic Modelling, Elsevier, vol. 29(6), pages 2494-2503.
    3. Yang, Yuying & Li, Jianping & Sun, Xiaolei & Chen, Jianming, 2014. "Measuring external oil supply risk: A modified diversification index with country risk and potential oil exports," Energy, Elsevier, vol. 68(C), pages 930-938.
    4. Hlompo Maruping & Itumeleng Mongale, 2016. "The Real Influences Of Oil Price Changes On The Growth Of Real Gdp: The Case Of South Africa," Proceedings of International Academic Conferences 3305561, International Institute of Social and Economic Sciences.
    5. Mohsin, M. & Zhou, P. & Iqbal, N. & Shah, S.A.A., 2018. "Assessing oil supply security of South Asia," Energy, Elsevier, vol. 155(C), pages 438-447.
    6. Jianping Li & Xiaolei Sun & Fei Wang & Dengsheng Wu, 2015. "Risk integration and optimization of oil-importing maritime system: a multi-objective programming approach," Annals of Operations Research, Springer, vol. 234(1), pages 57-76, November.
    7. Månsson, André & Sanches-Pereira, Alessandro & Hermann, Sebastian, 2014. "Biofuels for road transport: Analysing evolving supply chains in Sweden from an energy security perspective," Applied Energy, Elsevier, vol. 123(C), pages 349-357.
    8. Sun, Xiaolei & Liu, Chang & Chen, Xiuwen & Li, Jianping, 2017. "Modeling systemic risk of crude oil imports: Case of China’s global oil supply chain," Energy, Elsevier, vol. 121(C), pages 449-465.
    9. Ranjini L. Thaver & E. M. Ekanayake, 2010. "The Impact Of Apartheid And International Sanctions On South Africa'S Import Demand Function: An Empirical Analysis," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 4(4), pages 11-22.
    10. Eleyan, Mohammed I.Abu & Çatık, Abdurrahman Nazif & Balcılar, Mehmet & Ballı, Esra, 2021. "Are long-run income and price elasticities of oil demand time-varying? New evidence from BRICS countries," Energy, Elsevier, vol. 229(C).
    11. Ge, Fenglong & Fan, Ying, 2013. "Quantifying the risk to crude oil imports in China: An improved portfolio approach," Energy Economics, Elsevier, vol. 40(C), pages 72-80.
    12. Månsson, André & Johansson, Bengt & Nilsson, Lars J., 2014. "Assessing energy security: An overview of commonly used methodologies," Energy, Elsevier, vol. 73(C), pages 1-14.
    13. Wang, Minggang & Tian, Lixin & Du, Ruijin, 2016. "Research on the interaction patterns among the global crude oil import dependency countries: A complex network approach," Applied Energy, Elsevier, vol. 180(C), pages 779-791.
    14. Zhang, Hai-Ying & Ji, Qiang & Fan, Ying, 2014. "Competition, transmission and pattern evolution: A network analysis of global oil trade," Energy Policy, Elsevier, vol. 73(C), pages 312-322.
    15. Enwereuzoh, Precious Adaku & Odei-Mensah, Jones & Owusu Junior, Peterson, 2021. "Crude oil shocks and African stock markets," Research in International Business and Finance, Elsevier, vol. 55(C).
    16. Julien-Joern Mueller & Liam Wagner, 2013. "The Devil’s Tears from the Tournament of Shadows: Oil Supply, Markets and Unstable Producers," Energy Economics and Management Group Working Papers 5-2013, School of Economics, University of Queensland, Australia.
    17. Bigerna, Simona & D'Errico, Maria Chiara & Polinori, Paolo & Simshauer, Paul, 2022. "Renewable energy and portfolio volatility spillover effects of GCC oil exporting countries," MPRA Paper 114164, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    2. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    3. Seung-Jin Han & Won-Jae Lee & So-Hee Kim & Sang-Hoon Yoon & Hyunwoong Pyun, 2022. "Assessing Expected Long-term Benefits for the Olympic Games: Delphi-AHP Approach from Korean Olympic Experts," SAGE Open, , vol. 12(4), pages 21582440221, December.
    4. Seyed Rakhshan & Ali Kamyad & Sohrab Effati, 2015. "Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 505-525, March.
    5. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    6. Mónica García-Melón & Blanca Pérez-Gladish & Tomás Gómez-Navarro & Paz Mendez-Rodriguez, 2016. "Assessing mutual funds’ corporate social responsibility: a multistakeholder-AHP based methodology," Annals of Operations Research, Springer, vol. 244(2), pages 475-503, September.
    7. Luis Pérez-Domínguez & Luis Alberto Rodríguez-Picón & Alejandro Alvarado-Iniesta & David Luviano Cruz & Zeshui Xu, 2018. "MOORA under Pythagorean Fuzzy Set for Multiple Criteria Decision Making," Complexity, Hindawi, vol. 2018, pages 1-10, April.
    8. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    9. Kumar B, Pradeep, 2021. "Changing Objectives of Firms and Managerial Preferences: A Review of Models in Microeconomics," MPRA Paper 106967, University Library of Munich, Germany, revised 13 Mar 2021.
    10. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2018. "σ-µ efficiency analysis: A new methodology for evaluating units through composite indices," MPRA Paper 83569, University Library of Munich, Germany.
    11. Anirban Mukhopadhyay & Sugata Hazra & Debasish Mitra & C. Hutton & Abhra Chanda & Sandip Mukherjee, 2016. "Characterizing the multi-risk with respect to plausible natural hazards in the Balasore coast, Odisha, India: a multi-criteria analysis (MCA) appraisal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1495-1513, February.
    12. Chamoli, Sunil, 2015. "Hybrid FAHP (fuzzy analytical hierarchy process)-FTOPSIS (fuzzy technique for order preference by similarity of an ideal solution) approach for performance evaluation of the V down perforated baffle r," Energy, Elsevier, vol. 84(C), pages 432-442.
    13. H. S. C. Perera & W. K. R. Costa, 2008. "Analytic Hierarchy Process for Selection of Erp Software for Manufacturing Companies," Vision, , vol. 12(4), pages 1-11, October.
    14. G. La Scalia & F.P. Marra & J. Rühl & R. Sciortino & T. Caruso, 2016. "A fuzzy multi-criteria decision-making methodology to optimise olive agro-engineering processes based on geo-spatial technologies," International Journal of Management and Decision Making, Inderscience Enterprises Ltd, vol. 15(1), pages 1-15.
    15. Andersen, Steffen & Harrison, Glenn W. & Lau, Morten Igel & Rutström, Elisabet E., 2014. "Dual criteria decisions," Journal of Economic Psychology, Elsevier, vol. 41(C), pages 101-113.
      • Andersen, Steffen & Harrison, Glenn W. & Lau, Morten Igel & Rutström, Elisabet, 2009. "Dual Criteria Decisions," Working Papers 02-2009, Copenhagen Business School, Department of Economics.
    16. Mulliner, Emma & Smallbone, Kieran & Maliene, Vida, 2013. "An assessment of sustainable housing affordability using a multiple criteria decision making method," Omega, Elsevier, vol. 41(2), pages 270-279.
    17. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    18. Majid Ebrahimi & Hamid Nejadsoleymani & Mohammad Reza Mansouri Daneshvar, 2019. "Land suitability map and ecological carrying capacity for the recognition of touristic zones in the Kalat region, Iran: a multi-criteria analysis based on AHP and GIS," Asia-Pacific Journal of Regional Science, Springer, vol. 3(3), pages 697-718, October.
    19. Zeshui Xu, 2013. "Compatibility Analysis of Intuitionistic Fuzzy Preference Relations in Group Decision Making," Group Decision and Negotiation, Springer, vol. 22(3), pages 463-482, May.
    20. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:27:y:2010:i:1:p:445-453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.