IDEAS home Printed from https://ideas.repec.org/a/eee/ecanpo/v48y2015icp25-34.html
   My bibliography  Save this article

Decomposition analysis to examine Australia’s 2030 GHGs emissions target: How hard will it be to achieve?

Author

Listed:
  • Shahiduzzaman, Md
  • Layton, Allan

Abstract

The Australian government has recently pledged a reduction in GHGs emissions of 26–28% below the 2005 level by 2030. How big is the challenge for the country to achieve this target in terms of its present emissions profile, recent historical trends, and the contributions to those trends from key proximate factors contributing to emissions? In this paper, we attempt a quantitative judgement of the challenge by using decomposition analysis. Based on the analysis it appears the announced target will be quite challenging to achieve if the average annual mitigating effects from economic restructuring, energy efficiency improvements and movement towards less emissions-intensive energy sources in evidence over 2002–2013 continued through to 2030; however, if the contribution from these mitigating sources in evidence over 2006–2013 can be sustained, achievement of the target will be much less challenging. The challenge for government then will be to provide a policy framework to ensure the more pronounced beneficial impacts of the mitigating factors evidenced during 2006–2013 can be maintained over the years to 2030.

Suggested Citation

  • Shahiduzzaman, Md & Layton, Allan, 2015. "Decomposition analysis to examine Australia’s 2030 GHGs emissions target: How hard will it be to achieve?," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 25-34.
  • Handle: RePEc:eee:ecanpo:v:48:y:2015:i:c:p:25-34
    DOI: 10.1016/j.eap.2015.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0313592615300953
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eap.2015.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    2. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    3. Shonali Pachauri, 2014. "Household electricity access a trivial contributor to CO2 emissions growth in India," Nature Climate Change, Nature, vol. 4(12), pages 1073-1076, December.
    4. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    5. Shafik, Nemat & Bandyopadhyay, Sushenjit, 1992. "Economic growth and environmental quality : time series and cross-country evidence," Policy Research Working Paper Series 904, The World Bank.
    6. Md Shahiduzzaman & Allan Layton & Khorshed Alam, 2015. "Decomposition of energy-related CO2 emissions in Australia: Challenges and policy implications," Economic Analysis and Policy, Elsevier, vol. 45(c), pages 100-111.
    7. Panayotou T., 1993. "Empirical tests and policy analysis of environmental degradation at different stages of economic development," ILO Working Papers 992927783402676, International Labour Organization.
    8. Panayotou, Theodore, 1997. "Demystifying the environmental Kuznets curve: turning a black box into a policy tool," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 465-484, November.
    9. Wood, Richard, 2009. "Structural decomposition analysis of Australia's greenhouse gas emissions," Energy Policy, Elsevier, vol. 37(11), pages 4943-4948, November.
    10. Shahiduzzaman, Md. & Alam, Khorshed, 2013. "Changes in energy efficiency in Australia: A decomposition of aggregate energy intensity using logarithmic mean Divisia approach," Energy Policy, Elsevier, vol. 56(C), pages 341-351.
    11. Sato, Kazuo, 1976. "The Ideal Log-Change Index Number," The Review of Economics and Statistics, MIT Press, vol. 58(2), pages 223-228, May.
    12. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    13. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jie & Xiong, Yiling & Tian, Xin & Liu, Shangwei & Li, Jiashuo & Tanikawa, Hiroki, 2018. "Stagnating CO2 emissions with in-depth socioeconomic transition in Beijing," Applied Energy, Elsevier, vol. 228(C), pages 1714-1725.
    2. Kuriyama, Akihisa & Tamura, Kentaro & Kuramochi, Takeshi, 2019. "Can Japan enhance its 2030 greenhouse gas emission reduction targets? Assessment of economic and energy-related assumptions in Japan's NDC," Energy Policy, Elsevier, vol. 130(C), pages 328-340.
    3. Leal, Patrícia Alexandra & Marques, António Cardoso & Fuinhas, José Alberto, 2019. "Decoupling economic growth from GHG emissions: Decomposition analysis by sectoral factors for Australia," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 12-26.
    4. Bowen Xiao & Dongxiao Niu & Xiaodan Guo, 2016. "The Driving Forces of Changes in CO 2 Emissions in China: A Structural Decomposition Analysis," Energies, MDPI, vol. 9(4), pages 1-17, March.
    5. Mariano González-Sánchez & Juan Luis Martín-Ortega, 2020. "Greenhouse Gas Emissions Growth in Europe: A Comparative Analysis of Determinants," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
    6. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahiduzzaman, Md & Layton, Allan, 2017. "Decomposition analysis for assessing the United States 2025 emissions target: How big is the challenge?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 372-383.
    2. Shahiduzzaman, Md. & Layton, Allan, 2015. "Changes in CO2 emissions over business cycle recessions and expansions in the United States: A decomposition analysis," Applied Energy, Elsevier, vol. 150(C), pages 25-35.
    3. Leal, Patrícia Alexandra & Marques, António Cardoso & Fuinhas, José Alberto, 2019. "Decoupling economic growth from GHG emissions: Decomposition analysis by sectoral factors for Australia," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 12-26.
    4. Choi, Ki-Hong & Ang, B.W., 2012. "Attribution of changes in Divisia real energy intensity index — An extension to index decomposition analysis," Energy Economics, Elsevier, vol. 34(1), pages 171-176.
    5. He, Jie, 2010. "What is the role of openness for China's aggregate industrial SO2 emission?: A structural analysis based on the Divisia decomposition method," Ecological Economics, Elsevier, vol. 69(4), pages 868-886, February.
    6. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
    7. Wang, Qunwei & Hang, Ye & Su, Bin & Zhou, Peng, 2018. "Contributions to sector-level carbon intensity change: An integrated decomposition analysis," Energy Economics, Elsevier, vol. 70(C), pages 12-25.
    8. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    9. Shahiduzzaman, Md. & Alam, Khorshed, 2013. "Changes in energy efficiency in Australia: A decomposition of aggregate energy intensity using logarithmic mean Divisia approach," Energy Policy, Elsevier, vol. 56(C), pages 341-351.
    10. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    11. Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
    12. Muhammad Shahbaz & Syed Jawad Hussain Shahzad & Mantu Kumar Mahalik & Perry Sadorsky, 2018. "How strong is the causal relationship between globalization and energy consumption in developed economies? A country-specific time-series and panel analysis," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1479-1494, March.
    13. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    14. Priscilla Massa-Sánchez & Luis Quintana-Romero & Ronny Correa-Quezada & María de la Cruz del Río-Rama, 2020. "Empirical Evidence in Ecuador between Economic Growth and Environmental Deterioration," Sustainability, MDPI, vol. 12(3), pages 1-20, January.
    15. Edyta Sidorczuk-Pietraszko, 2020. "Spatial Differences in Carbon Intensity in Polish Households," Energies, MDPI, vol. 13(12), pages 1-21, June.
    16. Abolhosseini, Shahrouz & Heshmati, Almas & Altmann, Jörn, 2014. "The Effect of Renewable Energy Development on Carbon Emission Reduction: An Empirical Analysis for the EU-15 Countries," IZA Discussion Papers 7989, Institute of Labor Economics (IZA).
    17. Zilio, Mariana & Recalde, Marina, 2011. "GDP and environment pressure: The role of energy in Latin America and the Caribbean," Energy Policy, Elsevier, vol. 39(12), pages 7941-7949.
    18. Buhari DOĞAN & Osman DEĞER, 2018. "The role of economic growth and energy consumption on CO2 emissions in E7 countries," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(2(615), S), pages 231-246, Summer.
    19. Quan-Hoang Vuong & Manh-Tung Ho & Hong-Kong To Nguyen & Minh-Hoang Nguyen, 2019. "The trilemma of sustainable industrial growth: evidence from a piloting OECD’s Green city," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-14, December.
    20. Tenaw, Dagmawe & Beyene, Abebe D., 2021. "Environmental sustainability and economic development in sub-Saharan Africa: A modified EKC hypothesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecanpo:v:48:y:2015:i:c:p:25-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/economic-analysis-and-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.