IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v82y2017icp223-256.html
   My bibliography  Save this article

Impact of value-at-risk models on market stability

Author

Listed:
  • Llacay, Bàrbara
  • Peffer, Gilbert

Abstract

Financial institutions around the world use value-at-risk (VaR) models to manage their market risk and calculate their capital requirements under Basel Accords. VaR models, as any other risk management system, are meant to keep financial institutions out of trouble by, among other things, guiding investment decisions within established risk limits so that the viability of a business is not put unduly at risk in a sharp market downturn. However, some researchers have warned that the widespread use of VaR models creates negative externalities in financial markets, as it can feed market instability and result in what has been called endogenous risk, that is, risk caused and amplified by the system itself, rather than being the result of an exogenous shock. This paper aims at analyzing the potential of VaR systems to amplify market disturbances with an agent-based model of fundamentalist and technical traders which manage their risk with a simple VaR model and must reduce their positions when the risk of their portfolio goes above a given threshold. We analyse the impact of the widespread use of VaR systems on different financial instability indicators and confirm that VaR models may induce a particular price dynamics that rises market volatility. These dynamics, which we have called `VaR cycles’, take place when a sufficient number of traders reach their VaR limit and are forced to simultaneously reduce their portfolio; the reductions cause a sudden price movement, raise volatility and force even more traders to liquidate part of their positions. The model shows that market is more prone to suffer VaR cycles when investors use a short-term horizon to calculate asset volatility or a not-too-extreme value for their risk threshold.

Suggested Citation

  • Llacay, Bàrbara & Peffer, Gilbert, 2017. "Impact of value-at-risk models on market stability," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 223-256.
  • Handle: RePEc:eee:dyncon:v:82:y:2017:i:c:p:223-256
    DOI: 10.1016/j.jedc.2017.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188917301471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2017.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. O. Hermsen, 2010. "Does Basel II destabilize financial markets? An agent-based financial market perspective," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 73(1), pages 29-40, January.
    2. Aymanns, Christoph & Farmer, J. Doyne, 2015. "The dynamics of the leverage cycle," Journal of Economic Dynamics and Control, Elsevier, vol. 50(C), pages 155-179.
    3. Markus K. Brunnermeier & Lasse Heje Pedersen, 2009. "Market Liquidity and Funding Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 22(6), pages 2201-2238, June.
    4. Aymanns, Christoph & Caccioli, Fabio & Farmer, J. Doyne & Tan, Vincent W.C., 2016. "Taming the Basel leverage cycle," Journal of Financial Stability, Elsevier, vol. 27(C), pages 263-277.
    5. Beck, Thorsten & De Jonghe, Olivier & Schepens, Glenn, 2013. "Bank competition and stability: Cross-country heterogeneity," Journal of Financial Intermediation, Elsevier, vol. 22(2), pages 218-244.
    6. Stefan Thurner & J. Doyne Farmer & John Geanakoplos, 2012. "Leverage causes fat tails and clustered volatility," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 695-707, February.
    7. Saita, Francesco, 2007. "Value at Risk and Bank Capital Management," Elsevier Monographs, Elsevier, edition 1, number 9780123694669.
    8. Arthur, W.B. & Holland, J.H. & LeBaron, B. & Palmer, R. & Tayler, P., 1996. "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Working papers 9625, Wisconsin Madison - Social Systems.
    9. Bookstaber, Rick & Cetina, Jill & Feldberg, Greg & Flood, Mark & Glasserman, Paul, 2013. "Stress tests to promote financial stability: Assessing progress and looking to the future," Journal of Risk Management in Financial Institutions, Henry Stewart Publications, vol. 7(1), pages 16-25, December.
    10. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    11. Tobias Adrian & Hyun Song Shin, 2014. "Procyclical Leverage and Value-at-Risk," The Review of Financial Studies, Society for Financial Studies, vol. 27(2), pages 373-403.
    12. Guus ten Broeke & George van Voorn & Arend Ligtenberg, 2016. "Which Sensitivity Analysis Method Should I Use for My Agent-Based Model?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-5.
    13. Paul De Grauwe & Marianna Grimaldi, 2004. "Bubbles and Crashes in a Behavioural Finance Model," CESifo Working Paper Series 1194, CESifo.
    14. John Duffy & M. Ünver, 2006. "Asset price bubbles and crashes with near-zero-intelligence traders," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 27(3), pages 537-563, April.
    15. Danielsson, Jon & Shin, Hyun Song & Zigrand, Jean-Pierre, 2004. "The impact of risk regulation on price dynamics," Journal of Banking & Finance, Elsevier, vol. 28(5), pages 1069-1087, May.
    16. Andrew G. Haldane & Robert M. May, 2011. "Systemic risk in banking ecosystems," Nature, Nature, vol. 469(7330), pages 351-355, January.
    17. John Geanakoplos & Ana Fostel, 2008. "Leverage Cycles and the Anxious Economy," American Economic Review, American Economic Association, vol. 98(4), pages 1211-1244, September.
    18. Farmer, J. Doyne & Joshi, Shareen, 2002. "The price dynamics of common trading strategies," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 149-171, October.
    19. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    20. Tobias Adrian & Nina Boyarchenko, 2012. "Intermediary leverage cycles and financial stability," Staff Reports 567, Federal Reserve Bank of New York, revised 01 Feb 2015.
    21. Madhavan, Ananth, 2000. "Market microstructure: A survey," Journal of Financial Markets, Elsevier, vol. 3(3), pages 205-258, August.
    22. Chen, Shu-Heng & Yeh, Chia-Hsuan, 2001. "Evolving traders and the business school with genetic programming: A new architecture of the agent-based artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 25(3-4), pages 363-393, March.
    23. Westerhoff, Frank, 2009. "A simple agent-based financial market model: Direct interactions and comparisons of trading profits," BERG Working Paper Series 61, Bamberg University, Bamberg Economic Research Group.
    24. Riccardo Rebonato, 2007. "Introduction to Plight of the Fortune Tellers: Why We Need to Manage Financial Risk Differently," Introductory Chapters, in: Plight of the Fortune Tellers: Why We Need to Manage Financial Risk Differently, Princeton University Press.
    25. P. Tasca & S. Battiston, 2016. "Market procyclicality and systemic risk," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1219-1235, August.
    26. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    27. Trichet, J.C., 2011. "Intellectual challenges to financial stability analysis in the era of macroprudential oversight," Financial Stability Review, Banque de France, issue 15, pages 139-149, February.
    28. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    29. W. Brian Arthur & Paul Tayler, "undated". "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Computing in Economics and Finance 1997 57, Society for Computational Economics.
    30. Johnson, Neil F. & Jefferies, Paul & Hui, Pak Ming, 2003. "Financial Market Complexity," OUP Catalogue, Oxford University Press, number 9780198526650.
    31. Shin, Hyun Song, 2010. "Risk and Liquidity," OUP Catalogue, Oxford University Press, number 9780199546367.
    32. Richard Bookstaber, 2012. "Using Agent-Based Models for Analyzing Threats to Financial Stability," Working Papers 12-03, Office of Financial Research, US Department of the Treasury.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borer, Daniel & Perera, Devmali & Fauzi, Fitriya & Chau, Trinh Nguyen, 2023. "Identifying systemic risk of assets during international financial crises using Value at Risk elasticities," International Review of Financial Analysis, Elsevier, vol. 90(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard Bookstaber & Mark Paddrik & Brian Tivnan, 2018. "An agent-based model for financial vulnerability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(2), pages 433-466, July.
    2. Aymanns, Christoph & Caccioli, Fabio & Farmer, J. Doyne & Tan, Vincent W.C., 2016. "Taming the Basel leverage cycle," Journal of Financial Stability, Elsevier, vol. 27(C), pages 263-277.
    3. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    4. Frank H. Westerhoff, 2009. "Exchange Rate Dynamics: A Nonlinear Survey," Chapters, in: J. Barkley Rosser Jr. (ed.), Handbook of Research on Complexity, chapter 11, Edward Elgar Publishing.
    5. Fulvio Corsi & Stefano Marmi & Fabrizio Lillo, 2016. "When Micro Prudence Increases Macro Risk: The Destabilizing Effects of Financial Innovation, Leverage, and Diversification," Operations Research, INFORMS, vol. 64(5), pages 1073-1088, October.
    6. Fischer, Thomas & Riedler, Jesper, 2014. "Prices, debt and market structure in an agent-based model of the financial market," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 95-120.
    7. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    8. Alexandru Mandes & Peter Winker, 2017. "Complexity and model comparison in agent based modeling of financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 469-506, October.
    9. Noemi Schmitt & Ivonne Schwartz & Frank Westerhoff, 2022. "Heterogeneous speculators and stock market dynamics: a simple agent-based computational model," The European Journal of Finance, Taylor & Francis Journals, vol. 28(13-15), pages 1263-1282, October.
    10. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    11. Bàrbara Llacay & Gilbert Peffer, 2018. "Using realistic trading strategies in an agent-based stock market model," Computational and Mathematical Organization Theory, Springer, vol. 24(3), pages 308-350, September.
    12. Alexandru Mandes, 2014. "Order Placement in a Continuous Double Auction Agent Based Model," MAGKS Papers on Economics 201443, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    13. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    14. Aymanns, Christoph & Farmer, J. Doyne, 2015. "The dynamics of the leverage cycle," Journal of Economic Dynamics and Control, Elsevier, vol. 50(C), pages 155-179.
    15. Wiersema, Garbrand & Kleinnijenhuis, Alissa M. & Wetzer, Thom & Farmer, J. Doyne, 2023. "Scenario-free analysis of financial stability with interacting contagion channels," Journal of Banking & Finance, Elsevier, vol. 146(C).
    16. Riedler, Jesper & Brueckbauer, Frank, 2017. "Evaluating regulation within an artificial financial system: A framework and its application to the liquidity coverage ratio regulation," ZEW Discussion Papers 17-022, ZEW - Leibniz Centre for European Economic Research.
    17. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    18. Mazzarisi, Piero & Lillo, Fabrizio & Marmi, Stefano, 2019. "When panic makes you blind: A chaotic route to systemic risk," Journal of Economic Dynamics and Control, Elsevier, vol. 100(C), pages 176-199.
    19. Piero Mazzarisi & Fabrizio Lillo & Stefano Marmi, 2018. "When panic makes you blind: a chaotic route to systemic risk," Papers 1805.00785, arXiv.org.
    20. Christoph Aymanns & J. Doyne Farmer & Alissa M. Keinniejenhuis & Thom Wetzer, 2017. "Models of Financial Stability and their Application in Stress Tests," Working Papers on Finance 1805, University of St. Gallen, School of Finance.

    More about this item

    Keywords

    Value-at-risk; Agent-based simulation; Financial instability; Volatility; Risk limit; Volatility window;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G1 - Financial Economics - - General Financial Markets
    • G01 - Financial Economics - - General - - - Financial Crises
    • G20 - Financial Economics - - Financial Institutions and Services - - - General
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:82:y:2017:i:c:p:223-256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.