IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v34y2010i12p2407-2419.html
   My bibliography  Save this article

A dynamic bioeconomic analysis of mountain pine beetle epidemics

Author

Listed:
  • Sims, Charles
  • Aadland, David
  • Finnoff, David

Abstract

In this paper, we develop a bioeconomic model of timber harvesting that includes dynamic interactions between mountain pine beetle (MPB) and a lodgepole pine forest with a disaggregated size structure. The model is used to investigate the consequences of alternative public management strategies on forest dynamics in the presence of MPB outbreaks. Management practices similar to those commonly practiced are shown to increase the severity of MPB cycles. Centrally coordinated forest management can eliminate MPB cycles and lessen the impacts of MPB outbreaks with only small reductions in the long-run stock of adult trees.

Suggested Citation

  • Sims, Charles & Aadland, David & Finnoff, David, 2010. "A dynamic bioeconomic analysis of mountain pine beetle epidemics," Journal of Economic Dynamics and Control, Elsevier, vol. 34(12), pages 2407-2419, December.
  • Handle: RePEc:eee:dyncon:v:34:y:2010:i:12:p:2407-2419
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(10)00140-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Willassen, Yngve, 1998. "The stochastic rotation problem: A generalization of Faustmann's formula to stochastic forest growth," Journal of Economic Dynamics and Control, Elsevier, vol. 22(4), pages 573-596, April.
    2. Wilen, James & Brown, Gardner Jr., 1986. "Optimal recovery paths for perturbations of trophic level bioeconomic systems," Journal of Environmental Economics and Management, Elsevier, vol. 13(3), pages 225-234, September.
    3. Saphores, Jean-Daniel, 2003. "Harvesting a renewable resource under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 28(3), pages 509-529, December.
    4. Feder, G. & Regev, U., 1975. "Biological interactions and environmental effects in the economics of pest control," Journal of Environmental Economics and Management, Elsevier, vol. 2(2), pages 75-91, December.
    5. Brant Abbott & Brad Stennes & G. Cornelis van Kooten, 2007. "An Economic Analysis of Mountain Pine Beetle Impacts in a Global Context," Working Papers 2008-02, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    6. Hoekstra, Jeljer & van den Bergh, Jeroen C.J.M., 2005. "Harvesting and conservation in a predator-prey system," Journal of Economic Dynamics and Control, Elsevier, vol. 29(6), pages 1097-1120, June.
    7. W. A. Kurz & C. C. Dymond & G. Stinson & G. J. Rampley & E. T. Neilson & A. L. Carroll & T. Ebata & L. Safranyik, 2008. "Mountain pine beetle and forest carbon feedback to climate change," Nature, Nature, vol. 452(7190), pages 987-990, April.
    8. Miller, Robert A. & Voltaire, Karl, 1983. "A stochastic analysis of the tree paradigm," Journal of Economic Dynamics and Control, Elsevier, vol. 6(1), pages 371-386, September.
    9. Smith, Vernon L, 1969. "On Models of Commercial Fishing," Journal of Political Economy, University of Chicago Press, vol. 77(2), pages 181-198, March/Apr.
    10. Patriquin, Mike N. & Wellstead, Adam M. & White, William A., 2007. "Beetles, trees, and people: Regional economic impact sensitivity and policy considerations related to the mountain pine beetle infestation in British Columbia, Canada," Forest Policy and Economics, Elsevier, vol. 9(8), pages 938-946, May.
    11. List, John A. & Mason, Charles F., 2001. "Optimal Institutional Arrangements for Transboundary Pollutants in a Second-Best World: Evidence from a Differential Game with Asymmetric Players," Journal of Environmental Economics and Management, Elsevier, vol. 42(3), pages 277-296, November.
    12. Darwin C. Hall & Richard B. Norgaard, 1973. "On the Timing and Application of Pesticides," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 55(2), pages 198-201.
    13. Blake Phillips & James Beck Jr. & Trevor Nickel, 2007. "Managing the Economic Impacts of Mountain Pine Beetle Outbreaks in Alberta," Information Bulletins 1100, Western Centre for Economic Research.
    14. Hannesson, Rognvaldur, 1983. "Optimal harvesting of ecologically interdependent fish species," Journal of Environmental Economics and Management, Elsevier, vol. 10(4), pages 329-345, December.
    15. David Finnoff & John Tschirhart, 2003. "Protecting an Endangered Species While Harvesting Its Prey in a General Equilibrium Ecosystem Model," Land Economics, University of Wisconsin Press, vol. 79(2), pages 160-180.
    16. Ragozin, David L. & Brown, Gardner Jr., 1985. "Harvest policies and nonmarket valuation in a predator -- prey system," Journal of Environmental Economics and Management, Elsevier, vol. 12(2), pages 155-168, June.
    17. Masashi Konoshima & Claire A. Montgomery & Heidi J. Albers & Jeffrey L. Arthur, 2008. "Spatial-Endogenous Fire Risk and Efficient Fuel Management and Timber Harvest," Land Economics, University of Wisconsin Press, vol. 84(3), pages 449-468.
    18. Jonathan Yoder, 2004. "Playing with Fire: Endogenous Risk in Resource Management," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 933-948.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jones, Benjamin A. & McDermott, Shana M., 2018. "The economics of urban afforestation: Insights from an integrated bioeconomic-health model," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 116-135.
    2. Atallah, Shadi S. & Huang, Ju-Chin & Leahy, Jessica & Bennett, Karen, 2020. "Preference Heterogeneity and Neighborhood Effect in Invasive Species Control: The Case of Glossy Buckthorn in New Hampshire and Maine Forests," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304623, Agricultural and Applied Economics Association.
    3. Shady S. Atallah & Miguel I. Gómez & Jon M. Conrad, 2017. "Specification of Spatial-Dynamic Externalities and Implications for Strategic Behavior in Disease Control," Land Economics, University of Wisconsin Press, vol. 93(2), pages 209-229.
    4. Kelly M. Cobourn & Gregory S. Amacher & Robert G. Haight, 2019. "Cooperative Management of Invasive Species: A Dynamic Nash Bargaining Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(4), pages 1041-1068, April.
    5. Andrew R. Tilman & Robert G. Haight, 2023. "Public policy for management of forest pests within an ownership mosaic," Papers 2312.05403, arXiv.org, revised Dec 2024.
    6. David Aadland & Charles Sims & David Finnoff, 2015. "Spatial Dynamics of Optimal Management in Bioeconomic Systems," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 545-577, April.
    7. Melstrom, Richard T., 2014. "Managing apparent competition between the feral pigs and native foxes of Santa Cruz Island," Ecological Economics, Elsevier, vol. 107(C), pages 157-162.
    8. Szewczyk, Tim M. & Lee, Tom & Ducey, Mark J. & Aiello-Lammens, Matthew E. & Bibaud, Hayley & Allen, Jenica M., 2019. "Local management in a regional context: Simulations with process-based species distribution models," Ecological Modelling, Elsevier, vol. 413(C).
    9. Morag F. Macpherson & Adam Kleczkowski & John R. Healey & Chris Quine & Nick Hanley, 2016. "The Effects of Invasive Pests and Diseases on Strategies for Forest Diversification," Discussion Papers in Environment and Development Economics 2016-11, University of St. Andrews, School of Geography and Sustainable Development.
    10. Kovacs, Kent F. & Haight, Robert G. & Mercader, Rodrigo J. & McCullough, Deborah G., 2014. "A bioeconomic analysis of an emerald ash borer invasion of an urban forest with multiple jurisdictions," Resource and Energy Economics, Elsevier, vol. 36(1), pages 270-289.
    11. Jones, Benjamin A., 2019. "Tree Shade, Temperature, and Human Health: Evidence from Invasive Species-induced Deforestation," Ecological Economics, Elsevier, vol. 156(C), pages 12-23.
    12. Moeltner, Klaus & Blinn, Christine E. & Holmes, Thomas P., 2017. "Forest pests and home values: The importance of accuracy in damage assessment and geocoding of properties," Journal of Forest Economics, Elsevier, vol. 26(C), pages 46-55.
    13. Benjamin A. Jones & John Fleck, 2018. "Urban Trees and Water Use in Arid Climates: Insights from an Integrated Bioeconomic-Health Model," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-38, October.
    14. Morag F. Macpherson & Adam Kleczkowski & John R. Healey & Nick Hanley, 2018. "The Effects of Disease on Optimal Forest Rotation: A Generalisable Analytical Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(3), pages 565-588, July.
    15. Eli Fenichel & Timothy Richards & David Shanafelt, 2014. "The Control of Invasive Species on Private Property with Neighbor-to-Neighbor Spillovers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(2), pages 231-255, October.
    16. Gray, Dennis & Fan, Xiaoli, 2020. "Optimal Control of Mountain Pine Beetle Under Different Climate Scenarios: A Spatiotemporal Bioeconomic Model," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304436, Agricultural and Applied Economics Association.
    17. Macpherson, Morag F. & Kleczkowski, Adam & Healey, John R. & Quine, Christopher P. & Hanley, Nick, 2017. "The effects of invasive pests and pathogens on strategies for forest diversification," Ecological Modelling, Elsevier, vol. 350(C), pages 87-99.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Tschirhart, 2012. "Biology as a Source of Non-convexities in Ecological Production Functions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(2), pages 189-213, February.
    2. Eppink, Florian V. & van den Bergh, Jeroen C.J.M., 2007. "Ecological theories and indicators in economic models of biodiversity loss and conservation: A critical review," Ecological Economics, Elsevier, vol. 61(2-3), pages 284-293, March.
    3. David Aadland & Charles Sims & David Finnoff, 2015. "Spatial Dynamics of Optimal Management in Bioeconomic Systems," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 545-577, April.
    4. Kasperski, Stephen, 2016. "Optimal multispecies harvesting in the presence of a nuisance species," Marine Policy, Elsevier, vol. 64(C), pages 55-63.
    5. Melstrom, Richard T. & Horan, Richard D., 2013. "Managing excessive predation in a predator-endangered prey setting," Ecological Economics, Elsevier, vol. 90(C), pages 85-93.
    6. Charles Sims & David Aadland & David Finnoff & James Powell, 2013. "How Ecosystem Service Provision Can Increase Forest Mortality from Insect Outbreaks," Land Economics, University of Wisconsin Press, vol. 89(1), pages 154-176.
    7. Martin D. Smith & Larry B. Crowder, 2011. "Valuing Ecosystem Services with Fishery Rents: A Lumped-Parameter Approach to Hypoxia in the Neuse River Estuary," Sustainability, MDPI, vol. 3(11), pages 1-39, November.
    8. David Finnoff & John Tschirhart, 2003. "Protecting an Endangered Species While Harvesting Its Prey in a General Equilibrium Ecosystem Model," Land Economics, University of Wisconsin Press, vol. 79(2), pages 160-180.
    9. Tahvonen, Olli & Suominen, Antti & Malo, Pekka & Viitasaari, Lauri & Parkatti, Vesa-Pekka, 2022. "Optimizing high-dimensional stochastic forestry via reinforcement learning," Journal of Economic Dynamics and Control, Elsevier, vol. 145(C).
    10. Tibor Neugebauer, 2005. "Bioeconomics Of Sustainable Harvest Of Competing Species: A Comment," Others 0503012, University Library of Munich, Germany.
    11. Chladna, Zuzana, 2007. "Determination of optimal rotation period under stochastic wood and carbon prices," Forest Policy and Economics, Elsevier, vol. 9(8), pages 1031-1045, May.
    12. Christiaans, Thomas & Eichner, Thomas & Pethig, Rudiger, 2007. "Optimal pest control in agriculture," Journal of Economic Dynamics and Control, Elsevier, vol. 31(12), pages 3965-3985, December.
    13. Lee, Min-Yang A., 2008. "Whale-watching and Herring Fishing: Joint or Independent Production?," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6086, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    14. Finnoff, David & Tschirhart, John, 2003. "Harvesting in an eight-species ecosystem," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 589-611, May.
    15. Nicolas Querou & Agnès Tomini, 2014. "Ecosystem considerations in a second-best world," Post-Print hal-01123390, HAL.
    16. Ben Abdallah, Skander & Lasserre, Pierre, 2016. "Asset retirement with infinitely repeated alternative replacements: Harvest age and species choice in forestry," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 144-164.
    17. Kovacs, Kent F. & Haight, Robert G. & Mercader, Rodrigo J. & McCullough, Deborah G., 2014. "A bioeconomic analysis of an emerald ash borer invasion of an urban forest with multiple jurisdictions," Resource and Energy Economics, Elsevier, vol. 36(1), pages 270-289.
    18. Thomas Eichner & Rüdiger Pethig, 2007. "Harvesting in an integrated general equilibrium model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(1), pages 233-252, May.
    19. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    20. Richard Melstrom & Richard Horan, 2014. "Interspecies Management and Land Use Strategies to Protect Endangered Species," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(2), pages 199-218, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:34:y:2010:i:12:p:2407-2419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.