IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v93y2016icp456-468.html
   My bibliography  Save this article

Minimum volume peeling: A robust nonparametric estimator of the multivariate mode

Author

Listed:
  • Kirschstein, T.
  • Liebscher, S.
  • Porzio, G.C.
  • Ragozini, G.

Abstract

Among the measures of a distribution’s location, the mode is probably the least often used, although it has some appealing properties. Estimators for the mode of univariate distributions are widely available. However, few contributions can be found for the multivariate case. A consistent direct multivariate mode estimation procedure, called minimum volume peeling, can be outlined as follows. The approach iteratively selects nested subsamples with a decreasing fraction of sample points, looking for the minimum volume subsample at each step. The mode is then estimated by calculating the mean of all points in the final set. The robustness of the method is investigated by analyzing its finite sample breakdown point and algorithms to determine minimum volume sets are discussed. Simulation results confirm that using minimum volume peeling leads to efficient mode estimates both in uncontaminated as well as contaminated situations.

Suggested Citation

  • Kirschstein, T. & Liebscher, S. & Porzio, G.C. & Ragozini, G., 2016. "Minimum volume peeling: A robust nonparametric estimator of the multivariate mode," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 456-468.
  • Handle: RePEc:eee:csdana:v:93:y:2016:i:c:p:456-468
    DOI: 10.1016/j.csda.2015.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315001188
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Myoung-jae, 1989. "Mode regression," Journal of Econometrics, Elsevier, vol. 42(3), pages 337-349, November.
    2. Junmei Jing & Inge Koch & Kanta Naito, 2012. "Polynomial Histograms for Multivariate Density and Mode Estimation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(1), pages 75-96, March.
    3. Li, Qi & Racine, Jeff, 2003. "Nonparametric estimation of distributions with categorical and continuous data," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 266-292, August.
    4. Bickel, David R. & Fruhwirth, Rudolf, 2006. "On a fast, robust estimator of the mode: Comparisons to other robust estimators with applications," Computational Statistics & Data Analysis, Elsevier, vol. 50(12), pages 3500-3530, August.
    5. Hsu, Chih-Yuan & Wu, Tiee-Jian, 2013. "Efficient estimation of the mode of continuous multivariate data," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 148-159.
    6. Adelchi Azzalini, 2005. "The Skew‐normal Distribution and Related Multivariate Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 159-188, June.
    7. Steffen Liebscher & Thomas Kirschstein, 2015. "Efficiency of the pMST and RDELA location and scatter estimators," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 63-82, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José E. Chacón, 2020. "The Modal Age of Statistics," International Statistical Review, International Statistical Institute, vol. 88(1), pages 122-141, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruzankin, Pavel S. & Logachov, Artem V., 2020. "A fast mode estimator in multidimensional space," Statistics & Probability Letters, Elsevier, vol. 158(C).
    2. Hsu, Chih-Yuan & Wu, Tiee-Jian, 2013. "Efficient estimation of the mode of continuous multivariate data," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 148-159.
    3. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    4. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    5. Taisuke Otsu & Myung Hwan Seo, 2014. "Asymptotics for maximum score method under general conditions," STICERD - Econometrics Paper Series 571, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    6. Egozcue, Martín & García, Luis Fuentes & Wong, Wing-Keung & Zitikis, Ricardas, 2011. "Do investors like to diversify? A study of Markowitz preferences," European Journal of Operational Research, Elsevier, vol. 215(1), pages 188-193, November.
    7. Besstremyannaya, Galina, 2015. "Measuring the effect of health insurance companies on the quality of healthcare systems with kernel and parametric regressions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 3-20.
    8. Weihua Zhao & Riquan Zhang & Yukun Liu & Jicai Liu, 2015. "Empirical likelihood based modal regression," Statistical Papers, Springer, vol. 56(2), pages 411-430, May.
    9. Hao Dong & Daniel L. Millimet, 2020. "Propensity Score Weighting with Mismeasured Covariates: An Application to Two Financial Literacy Interventions," JRFM, MDPI, vol. 13(11), pages 1-24, November.
    10. Jeff Racine & Qi Li & Xi Zhu, 2004. "Kernel Estimation of Multivariate Conditional Distributions," Annals of Economics and Finance, Society for AEF, vol. 5(2), pages 211-235, November.
    11. Jeffrey Racine, 2015. "Mixed data kernel copulas," Empirical Economics, Springer, vol. 48(1), pages 37-59, February.
    12. Gustavo Canavire-Bacarreza & Luis C. Carvajal-Osorio, 2020. "Two Stories of Wage Dynamics in Latin America: Different Policies, Different Outcomes," Journal of Labor Research, Springer, vol. 41(1), pages 128-168, June.
    13. Jamalizadeh, A. & Balakrishnan, N., 2010. "Distributions of order statistics and linear combinations of order statistics from an elliptical distribution as mixtures of unified skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1412-1427, July.
    14. David Mayston, 2015. "Analysing the effectiveness of public service producers with endogenous resourcing," Journal of Productivity Analysis, Springer, vol. 44(1), pages 115-126, August.
    15. Daniel J. Henderson & Alexandre Olbrecht & Solomon W. Polachek, 2006. "Do Former College Athletes Earn More at Work?: A Nonparametric Assessment," Journal of Human Resources, University of Wisconsin Press, vol. 41(3).
    16. Dvorkin Daniel & Biehs Brian & Kechris Katerina, 2013. "A graphical model method for integrating multiple sources of genome-scale data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(4), pages 469-487, August.
    17. Chu, Chi-Yang & Henderson, Daniel J. & Parmeter, Christopher F., 2017. "On discrete Epanechnikov kernel functions," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 79-105.
    18. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    19. Batiz-Zuk, Enrique & Christodoulakis, George & Poon, Ser-Huang, 2015. "Credit contagion in the presence of non-normal shocks," International Review of Financial Analysis, Elsevier, vol. 37(C), pages 129-139.
    20. Martin Eling & Simone Farinelli & Damiano Rossello & Luisa Tibiletti, 2010. "Skewness in hedge funds returns: classical skewness coefficients vs Azzalini's skewness parameter," International Journal of Managerial Finance, Emerald Group Publishing Limited, vol. 6(4), pages 290-304, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:93:y:2016:i:c:p:456-468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.