IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v75y2014icp53-65.html
   My bibliography  Save this article

Bayesian variable selection under the proportional hazards mixed-effects model

Author

Listed:
  • Lee, Kyeong Eun
  • Kim, Yongku
  • Xu, Ronghui

Abstract

Over the past decade much statistical research has been carried out to develop models for correlated survival data; however, methods for model selection are still very limited. A stochastic search variable selection (SSVS) approach under the proportional hazards mixed-effects model (PHMM) is developed. The SSVS method has previously been applied to linear and generalized linear mixed models, and to the proportional hazards model with high dimensional data. Because the method has mainly been developed for hierarchical normal mixture distributions, it operates on the linear predictor under the Cox type models. The PHMM naturally incorporates the normal distribution via the random effects, which enables SSVS to efficiently search through the candidate variable space. The approach was evaluated through simulation, and applied to a multi-center lung cancer clinical trial data set, for which the variable selection problem was previously debated upon in the literature.

Suggested Citation

  • Lee, Kyeong Eun & Kim, Yongku & Xu, Ronghui, 2014. "Bayesian variable selection under the proportional hazards mixed-effects model," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 53-65.
  • Handle: RePEc:eee:csdana:v:75:y:2014:i:c:p:53-65
    DOI: 10.1016/j.csda.2014.02.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314000498
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.02.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samuli Ripatti & Juni Palmgren, 2000. "Estimation of Multivariate Frailty Models Using Penalized Partial Likelihood," Biometrics, The International Biometric Society, vol. 56(4), pages 1016-1022, December.
    2. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    3. Zhen Chen & David B. Dunson, 2003. "Random Effects Selection in Linear Mixed Models," Biometrics, The International Biometric Society, vol. 59(4), pages 762-769, December.
    4. M. C. Donohue & R. Overholser & R. Xu & F. Vaida, 2011. "Conditional Akaike information under generalized linear and proportional hazards mixed models," Biometrika, Biometrika Trust, vol. 98(3), pages 685-700.
    5. Satkartar K. Kinney & David B. Dunson, 2007. "Fixed and Random Effects Selection in Linear and Logistic Models," Biometrics, The International Biometric Society, vol. 63(3), pages 690-698, September.
    6. Abrahantes, Jose Cortinas & Legrand, Catherine & Burzykowski, Tomasz & Janssen, Paul & Ducrocq, Vincent & Duchateau, Luc, 2007. "Comparison of different estimation procedures for proportional hazards model with random effects," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3913-3930, May.
    7. David B. Dunson & Zhen Chen, 2004. "Selecting Factors Predictive of Heterogeneity in Multivariate Event Time Data," Biometrics, The International Biometric Society, vol. 60(2), pages 352-358, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingan Yang & Min Wang & Guanghui Dong, 2020. "Bayesian variable selection for mixed effects model with shrinkage prior," Computational Statistics, Springer, vol. 35(1), pages 227-243, March.
    2. Yang, Mingan, 2012. "Bayesian variable selection for logistic mixed model with nonparametric random effects," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2663-2674.
    3. Armagan, Artin & Dunson, David, 2011. "Sparse variational analysis of linear mixed models for large data sets," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1056-1062, August.
    4. Mingan Yang, 2020. "Bayesian Mixed Effects Model with Variable Selection," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 10(2), pages 27-29, August.
    5. Satkartar K. Kinney & David B. Dunson, 2007. "Fixed and Random Effects Selection in Linear and Logistic Models," Biometrics, The International Biometric Society, vol. 63(3), pages 690-698, September.
    6. Wagner, Helga & Duller, Christine, 2012. "Bayesian model selection for logistic regression models with random intercept," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1256-1274.
    7. Imori, Shinpei & Rosen, Dietrich von, 2015. "Covariance components selection in high-dimensional growth curve model with random coefficients," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 86-94.
    8. Tsai-Hung Fan & Yi-Fu Wang & Yi-Chen Zhang, 2014. "Bayesian model selection in linear mixed effects models with autoregressive(p) errors using mixture priors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1814-1829, August.
    9. David B. Dunson & Zhen Chen, 2004. "Selecting Factors Predictive of Heterogeneity in Multivariate Event Time Data," Biometrics, The International Biometric Society, vol. 60(2), pages 352-358, June.
    10. Daniel R. Kowal, 2023. "Subset selection for linear mixed models," Biometrics, The International Biometric Society, vol. 79(3), pages 1853-1867, September.
    11. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
    12. Xinyu Zhang & Hua Liang & Anna Liu & David Ruppert & Guohua Zou, 2016. "Selection Strategy for Covariance Structure of Random Effects in Linear Mixed-effects Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 275-291, March.
    13. Alhamzawi, Rahim, 2016. "Bayesian model selection in ordinal quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 68-78.
    14. Howard D. Bondell & Arun Krishna & Sujit K. Ghosh, 2010. "Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models," Biometrics, The International Biometric Society, vol. 66(4), pages 1069-1077, December.
    15. Giordani, Paolo & Jacobson, Tor & Schedvin, Erik von & Villani, Mattias, 2014. "Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(4), pages 1071-1099, August.
    16. Benjamin R. Saville & Amy H. Herring, 2009. "Testing Random Effects in the Linear Mixed Model Using Approximate Bayes Factors," Biometrics, The International Biometric Society, vol. 65(2), pages 369-376, June.
    17. Hoeting, Jennifer A. & Ibrahim, Joseph G., 1998. "Bayesian predictive simultaneous variable and transformation selection in the linear model," Computational Statistics & Data Analysis, Elsevier, vol. 28(1), pages 87-103, July.
    18. Bin Jiang & Anastasios Panagiotelis & George Athanasopoulos & Rob Hyndman & Farshid Vahid, 2016. "Bayesian Rank Selection in Multivariate Regression," Monash Econometrics and Business Statistics Working Papers 6/16, Monash University, Department of Econometrics and Business Statistics.
    19. Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.
    20. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:75:y:2014:i:c:p:53-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.