Integral approximations for computing optimum designs in random effects logistic regression models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2012.05.024
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tim Holland‐Letz & Holger Dette & Andrey Pepelyshev, 2011. "A geometric characterization of optimal designs for regression models with correlated observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 239-252, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Santiago Campos-Barreiro & Jesús López-Fidalgo, 2015. "D-optimal experimental designs for a growth model applied to a Holstein-Friesian dairy farm," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 491-505, September.
- Rodríguez-Díaz, Juan M., 2017. "Computation of c-optimal designs for models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 287-296.
- Xiao-Dong Zhou & Yun-Juan Wang & Rong-Xian Yue, 2018. "Robust population designs for longitudinal linear regression model with a random intercept," Computational Statistics, Springer, vol. 33(2), pages 903-931, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Xin & Yue, Rong-Xian & Chatterjee, Kashinath, 2020. "Geometric characterization of D-optimal designs for random coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 159(C).
- Xin Liu & Rong-Xian Yue, 2020. "Elfving’s theorem for R-optimality of experimental designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(4), pages 485-498, May.
More about this item
Keywords
Binary regression model; Fisher information matrix; Information matrix; Optimal design of experiments; Influence function;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:1208-1220. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.