IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v71y2014icp1208-1220.html
   My bibliography  Save this article

Integral approximations for computing optimum designs in random effects logistic regression models

Author

Listed:
  • Tommasi, C.
  • Rodríguez-Díaz, J.M.
  • Santos-Martín, M.T.

Abstract

In the context of nonlinear models, the analytical expression of the Fisher information matrix is essential to compute optimum designs. The Fisher information matrix of the random effects logistic regression model is proved to be equivalent to the information matrix of the linearized model, which depends on some integrals. Some algebraic approximations for these integrals are proposed, which are consistent with numerical integral approximations but much faster to be evaluated. Therefore, these algebraic integral approximations are very useful from a computational point of view. Locally D-, A-, c-optimum designs and the optimum design to estimate a percentile are computed for the univariate logistic regression model with Gaussian random effects. Since locally optimum designs depend on a chosen nominal value for the parameter vector, a Bayesian D-optimum design is also computed. In order to find Bayesian optimum designs it is essential to apply the proposed integral approximations, because the use of numerical approximations makes the computation of these optimum designs very slow.

Suggested Citation

  • Tommasi, C. & Rodríguez-Díaz, J.M. & Santos-Martín, M.T., 2014. "Integral approximations for computing optimum designs in random effects logistic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1208-1220.
  • Handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:1208-1220
    DOI: 10.1016/j.csda.2012.05.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731200223X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.05.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tim Holland‐Letz & Holger Dette & Andrey Pepelyshev, 2011. "A geometric characterization of optimal designs for regression models with correlated observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 239-252, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santiago Campos-Barreiro & Jesús López-Fidalgo, 2015. "D-optimal experimental designs for a growth model applied to a Holstein-Friesian dairy farm," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 491-505, September.
    2. Rodríguez-Díaz, Juan M., 2017. "Computation of c-optimal designs for models with correlated observations," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 287-296.
    3. Xiao-Dong Zhou & Yun-Juan Wang & Rong-Xian Yue, 2018. "Robust population designs for longitudinal linear regression model with a random intercept," Computational Statistics, Springer, vol. 33(2), pages 903-931, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xin & Yue, Rong-Xian & Chatterjee, Kashinath, 2020. "Geometric characterization of D-optimal designs for random coefficient regression models," Statistics & Probability Letters, Elsevier, vol. 159(C).
    2. Xin Liu & Rong-Xian Yue, 2020. "Elfving’s theorem for R-optimality of experimental designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(4), pages 485-498, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:1208-1220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.