IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v64y2013icp253-268.html
   My bibliography  Save this article

An empirical study of tests for uniformity in multidimensional data

Author

Listed:
  • Petrie, Adam
  • Willemain, Thomas R.

Abstract

An important problem in high-dimensional data analysis is determining whether sample points are uniformly distributed (i.e., exhibit complete spatial randomness) over some compact support, or rather possess some underlying structure (e.g., clusters or other nonhomogeneities). We propose two new graph-theoretic tests of uniformity which utilize the minimum spanning tree and a snake (a short non-branching acyclic path connecting each data point). We compare the powers of statistics based on these graphs with other statistics from the literature on an array of non-uniform alternatives in a variety of supports. For data in a hypercube, we find that test statistics based on the minimum spanning tree have superior power when the data displays regularity (e.g., results from an inhibition process). For arbitrarily shaped or unknown supports, we use run length statistics of the sequence of segment lengths along the snake’s path to test uniformity. The snake is particularly useful because no knowledge or estimation of the support is required to compute the test statistic, it can be computed quickly for any dimension, and it shows what kinds of non-uniformities are present. These properties make the snake unique among multivariate tests of uniformity since others only function on specific and known supports, have computational difficulties in high dimension, or have inconsistent type I error rates.

Suggested Citation

  • Petrie, Adam & Willemain, Thomas R., 2013. "An empirical study of tests for uniformity in multidimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 253-268.
  • Handle: RePEc:eee:csdana:v:64:y:2013:i:c:p:253-268
    DOI: 10.1016/j.csda.2013.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313000571
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.02.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Justel, Ana & Peña, Daniel & Zamar, Rubén, 1997. "A multivariate Kolmogorov-Smirnov test of goodness of fit," Statistics & Probability Letters, Elsevier, vol. 35(3), pages 251-259, October.
    2. Dale L. Zimmerman, 1993. "A Bivariate Cramér–Von Mises Type of Test for Spatial Randomness," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 42(1), pages 43-54, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengta Yang & Reza Modarres, 2017. "Multivariate tests of uniformity," Statistical Papers, Springer, vol. 58(3), pages 627-639, September.
    2. Ebner, Bruno & Henze, Norbert & Yukich, Joseph E., 2018. "Multivariate goodness-of-fit on flat and curved spaces via nearest neighbor distances," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 231-242.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petrie, Adam, 2016. "Graph-theoretic multisample tests of equality in distribution for high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 145-158.
    2. Carole Bernard & Oleg Bondarenko & Steven Vanduffel, 2021. "A model-free approach to multivariate option pricing," Review of Derivatives Research, Springer, vol. 24(2), pages 135-155, July.
    3. Jie Shi & Arno P. J. M. Siebes & Siamak Mehrkanoon, 2023. "TransCORALNet: A Two-Stream Transformer CORAL Networks for Supply Chain Credit Assessment Cold Start," Papers 2311.18749, arXiv.org.
    4. Heinrich Lothar & Klein Stella, 2011. "Central limit theorem for the integrated squared error of the empirical second-order product density and goodness-of-fit tests for stationary point processes," Statistics & Risk Modeling, De Gruyter, vol. 28(4), pages 359-387, December.
    5. Squalli, Jay, 2017. "Renewable energy, coal as a baseload power source, and greenhouse gas emissions: Evidence from U.S. state-level data," Energy, Elsevier, vol. 127(C), pages 479-488.
    6. Chiragiev, Arthur & Landsman, Zinoviy, 2009. "Multivariate flexible Pareto model: Dependency structure, properties and characterizations," Statistics & Probability Letters, Elsevier, vol. 79(16), pages 1733-1743, August.
    7. Torri, Gabriele & Giacometti, Rosella & Paterlini, Sandra, 2018. "Robust and sparse banking network estimation," European Journal of Operational Research, Elsevier, vol. 270(1), pages 51-65.
    8. Yue, Zenghui & Xu, Haiyun & Yuan, Guoting & Pang, Hongshen, 2019. "Modeling study of knowledge diffusion in scientific collaboration networks based on differential dynamics: A case study in graphene field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 375-391.
    9. Langrené, Nicolas & Warin, Xavier, 2021. "Fast multivariate empirical cumulative distribution function with connection to kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    10. Cheng, Qixiu & Lin, Yuqian & Zhou, Xuesong (Simon) & Liu, Zhiyuan, 2024. "Analytical formulation for explaining the variations in traffic states: A fundamental diagram modeling perspective with stochastic parameters," European Journal of Operational Research, Elsevier, vol. 312(1), pages 182-197.
    11. R. N. Rattihalli, 2023. "A Class of Multivariate Power Skew Symmetric Distributions: Properties and Inference for the Power-Parameter," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1356-1393, August.
    12. Zuliqar Ali & Ijaz Hussain & Muhammad Faisal & Hafiza Mamona Nazir & Mitwali Abd-el Moemen & Tajammal Hussain & Sadaf Shamsuddin, 2017. "A Novel Multi-Scalar Drought Index for Monitoring Drought: the Standardized Precipitation Temperature Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(15), pages 4957-4969, December.
    13. Jean-David Fermanian, 2003. "Goodness of Fit Tests for Copulas," Working Papers 2003-34, Center for Research in Economics and Statistics.
    14. Abul Kalam Azad & Mohammad Golam Rasul & Talal Yusaf, 2014. "Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications," Energies, MDPI, vol. 7(5), pages 1-30, May.
    15. Audrius Kabašinskas & Leonidas Sakalauskas & Ingrida Vaičiulytė, 2021. "An Analytical EM Algorithm for Sub-Gaussian Vectors," Mathematics, MDPI, vol. 9(9), pages 1-20, April.
    16. Wang, Rui & Purshouse, Robin C. & Fleming, Peter J., 2015. "Preference-inspired co-evolutionary algorithms using weight vectors," European Journal of Operational Research, Elsevier, vol. 243(2), pages 423-441.
    17. Katarína Remeňová & Jakub Kintler & Nadežda Jankelová, 2020. "The General Concept of the Revenue Model for Sustainability Growth," Sustainability, MDPI, vol. 12(16), pages 1-12, August.
    18. Jason J. Sauppe & Sheldon H. Jacobson, 2017. "The role of covariate balance in observational studies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 323-344, June.
    19. Carolina Gil Marcelino & Carlos Camacho-Gómez & Silvia Jiménez-Fernández & Sancho Salcedo-Sanz, 2021. "Optimal Generation Scheduling in Hydro-Power Plants with the Coral Reefs Optimization Algorithm," Energies, MDPI, vol. 14(9), pages 1-24, April.
    20. Psaradakis, Zacharias & Vávra, Marián, 2017. "A distance test of normality for a wide class of stationary processes," Econometrics and Statistics, Elsevier, vol. 2(C), pages 50-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:64:y:2013:i:c:p:253-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.