IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v58y2013icp383-396.html
   My bibliography  Save this article

A semiparametric approach to source separation using independent component analysis

Author

Listed:
  • Eloyan, Ani
  • Ghosh, Sujit K.

Abstract

Data processing and source identification using lower dimensional hidden structure plays an essential role in many fields of applications, including image processing, neural networks, genome studies, signal processing and other areas where large datasets are often encountered. One of the common methods for source separation using lower dimensional structure involves the use of Independent Component Analysis, which is based on a linear representation of the observed data in terms of independent hidden sources. The problem thus involves the estimation of the linear mixing matrix and the densities of the independent hidden sources. However, the solution to the problem depends on the identifiability of the sources. This paper first presents a set of sufficient conditions to establish the identifiability of the sources and the mixing matrix using moment restrictions of the hidden source variables. Under such sufficient conditions a semi-parametric maximum likelihood estimate of the mixing matrix is obtained using a class of mixture distributions. The consistency of our proposed estimate is established under additional regularity conditions. The proposed method is illustrated and compared with existing methods using simulated and real datasets.

Suggested Citation

  • Eloyan, Ani & Ghosh, Sujit K., 2013. "A semiparametric approach to source separation using independent component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 383-396.
  • Handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:383-396
    DOI: 10.1016/j.csda.2012.09.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312003416
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.09.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dietmar Ferger, 2004. "A continuous mapping theorem for the argmax‐functional in the non‐unique case," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(1), pages 83-96, February.
    2. Ani Eloyan & Sujit Ghosh, 2011. "Smooth density estimation with moment constraints using mixture distributions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 513-531.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin B. Risk & David S. Matteson & David Ruppert & Ani Eloyan & Brian S. Caffo, 2014. "An evaluation of independent component analyses with an application to resting-state fMRI," Biometrics, The International Biometric Society, vol. 70(1), pages 224-236, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahkar, Ratul & Mukherjee, Sayan & Roy, Souvik, 2022. "Generalized perturbed best response dynamics with a continuum of strategies," Journal of Economic Theory, Elsevier, vol. 200(C).
    2. Ferger Dietmar & Klotsche Jens, 2009. "Estimation of split-points in binary regression," Statistics & Risk Modeling, De Gruyter, vol. 27(02), pages 93-128, December.
    3. RatulLahkar & Sayan Mukherjee & Souvik Roy, 2021. "Generalized Perturbed Best Response Dynamics with a Continuum of Strategies," Working Papers 51, Ashoka University, Department of Economics.
    4. Bao, Junshu & Hanson, Timothy E., 2016. "A mean-constrained finite mixture of normals model," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 93-99.
    5. Kun Meng & Ani Eloyan, 2021. "Principal manifold estimation via model complexity selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 369-394, April.
    6. Kuangyu Wen & Ximing Wu & David J. Leatham, 2021. "Spatially Smoothed Kernel Densities with Application to Crop Yield Distributions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 349-366, September.
    7. Cho, Haeran & Kirch, Claudia, 2022. "Bootstrap confidence intervals for multiple change points based on moving sum procedures," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    8. Habibi Reza, 2011. "Exact Distribution of Argmax (Argmin)," Stochastics and Quality Control, De Gruyter, vol. 26(2), pages 155-162, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:383-396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.