IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v57y2013i1p570-588.html
   My bibliography  Save this article

Stochastic models for multiple pathways of temporal natural history on co-morbidity of chronic disease

Author

Listed:
  • Yen, Amy Ming-Fang
  • Chen, Hsiu-Hsi

Abstract

Chronic diseases frequently co-occur in individuals. Susceptibility to co-morbidity, the temporal sequence and the transition rates governing the development of co-morbid diseases are often hidden or partially observable. To tackle these thorny issues we developed a series of co-morbidity stochastic models with latent variables to estimate the true proportions of susceptibility, temporal sequence, and transition rates. We begin with a bivariate co-morbidity model for two chronic diseases, then extend to a trivariate co-morbidity model for three chronic diseases, and to a generalized high-order co-morbidity model to accommodate more than three chronic diseases. To illustrate our approach we fitted the proposed model with data from a population-based health check-up for hypertension, diabetes mellitus (DM), and overweight in Matsu.

Suggested Citation

  • Yen, Amy Ming-Fang & Chen, Hsiu-Hsi, 2013. "Stochastic models for multiple pathways of temporal natural history on co-morbidity of chronic disease," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 570-588.
  • Handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:570-588
    DOI: 10.1016/j.csda.2012.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312002836
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ira M. Longini & M. Elizabeth Halloran, 1996. "A Frailty Mixture Model for Estimating Vaccine Efficacy," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(2), pages 165-173, June.
    2. Tony H. H. Chen & H. S. Kuo & M. F. Yen & M. S. Lai & L. Tabar & S. W. Duffy, 2000. "Estimation of Sojourn Time in Chronic Disease Screening Without Data on Interval Cases," Biometrics, The International Biometric Society, vol. 56(1), pages 167-172, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saligrama Agnihothri & Leon Cui & Mohammad Delasay & Balaraman Rajan, 2020. "The value of mHealth for managing chronic conditions," Health Care Management Science, Springer, vol. 23(2), pages 185-202, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M Gabriela M Gomes & Marc Lipsitch & Andrew R Wargo & Gael Kurath & Carlota Rebelo & Graham F Medley & Antonio Coutinho, 2014. "A Missing Dimension in Measures of Vaccination Impacts," PLOS Pathogens, Public Library of Science, vol. 10(3), pages 1-3, March.
    2. Susmita Datta & M. Elizabeth Halloran & Ira M. Longini Jr, 1999. "Efficiency of Estimating Vaccine Efficacy for Susceptibility and Infectiousness: Randomization by Individual Versus Household," Biometrics, The International Biometric Society, vol. 55(3), pages 792-798, September.
    3. Ortega, Edwin M.M. & Cordeiro, Gauss M. & Lemonte, Artur J., 2012. "A log-linear regression model for the β-Birnbaum–Saunders distribution with censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 698-718.
    4. Yi‐Ying Wu & Ming‐Fang Yen & Cheng‐Ping Yu & Hsiu‐Hsi Chen, 2014. "Risk Assessment of Multistate Progression of Breast Tumor with State‐Dependent Genetic and Environmental Covariates," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 367-379, February.
    5. Amy Ming-Fang Yen & Tony Hsiu-Hsi Chen, 2007. "Mixture Multi-state Markov Regression Model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(1), pages 11-21.
    6. Jane Warwick & Stephen W. Duffy, 2005. "A review of cancer screening evaluation techniques, with some particular examples in breast cancer screening," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(4), pages 657-677, November.
    7. Paul F. Pinsky, 2004. "An Early- and Late-Stage Convolution Model for Disease Natural History," Biometrics, The International Biometric Society, vol. 60(1), pages 191-198, March.
    8. Hsiu-Hsi Chen & Amy Ming-Fang Yen & Laszlo Tabár, 2012. "A Stochastic Model for Calibrating the Survival Benefit of Screen-Detected Cancers," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1339-1359, December.
    9. Andreas Wienke & Paul Lichtenstein & Anatoli I. Yashin, 2003. "Unobserved heterogeneity in a model with cure fraction applied to breast cancer," MPIDR Working Papers WP-2003-010, Max Planck Institute for Demographic Research, Rostock, Germany.
    10. Yang, Yang & Longini Jr., Ira M. & Elizabeth Halloran, M., 2007. "A data-augmentation method for infectious disease incidence data from close contact groups," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6582-6595, August.
    11. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    12. Paul S. Albert & Joanna H. Shih, 2003. "Modeling Tumor Growth with Random Onset," Biometrics, The International Biometric Society, vol. 59(4), pages 897-906, December.
    13. Anastasios A. Tsiatis & Marie Davidian, 2022. "Estimating vaccine efficacy over time after a randomized study is unblinded," Biometrics, The International Biometric Society, vol. 78(3), pages 825-838, September.
    14. Yu, Binbing & Peng, Yingwei, 2008. "Mixture cure models for multivariate survival data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1524-1532, January.
    15. Delphine Pessoa & Caetano Souto-Maior & Erida Gjini & Joao S Lopes & Bruno Ceña & Cláudia T Codeço & M Gabriela M Gomes, 2014. "Unveiling Time in Dose-Response Models to Infer Host Susceptibility to Pathogens," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-9, August.
    16. Rui Chen & Menggang Yu, 2021. "Tailored optimal posttreatment surveillance for cancer recurrence," Biometrics, The International Biometric Society, vol. 77(3), pages 942-955, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:570-588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.