IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v57y2013i1p504-517.html
   My bibliography  Save this article

An EM algorithm for continuous-time bivariate Markov chains

Author

Listed:
  • Mark, Brian L.
  • Ephraim, Yariv

Abstract

We study properties and parameter estimation of a finite-state, homogeneous, continuous-time, bivariate Markov chain. Only one of the two processes of the bivariate Markov chain is assumed observable. The general form of the bivariate Markov chain studied here makes no assumptions on the structure of the generator of the chain. Consequently, simultaneous jumps of the observable and underlying processes are possible, neither process is necessarily Markov, and the time between jumps of each of the two processes has a phase-type distribution. Examples of bivariate Markov chains include the Markov modulated Poisson process and the batch Markovian arrival process when appropriate modulo counts are used in each case. We develop an expectation–maximization (EM) procedure for estimating the generator of a bivariate Markov chain, and we demonstrate its performance. The procedure does not rely on any numerical integration or sampling scheme of the continuous-time bivariate Markov chain. The proposed EM algorithm is equally applicable to multivariate Markov chains.

Suggested Citation

  • Mark, Brian L. & Ephraim, Yariv, 2013. "An EM algorithm for continuous-time bivariate Markov chains," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 504-517.
  • Handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:504-517
    DOI: 10.1016/j.csda.2012.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312002915
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.07.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leroux, Brian G., 1992. "Maximum-likelihood estimation for hidden Markov models," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 127-143, February.
    2. Robert B. Israel & Jeffrey S. Rosenthal & Jason Z. Wei, 2001. "Finding Generators for Markov Chains via Empirical Transition Matrices, with Applications to Credit Ratings," Mathematical Finance, Wiley Blackwell, vol. 11(2), pages 245-265, April.
    3. Lothar Breuer, 2002. "An EM Algorithm for Batch Markovian Arrival Processes and its Comparison to a Simpler Estimation Procedure," Annals of Operations Research, Springer, vol. 112(1), pages 123-138, April.
    4. Erhan Çinlar, 1975. "Exceptional Paper--Markov Renewal Theory: A Survey," Management Science, INFORMS, vol. 21(7), pages 727-752, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jane M. Lange & Rebecca A. Hubbard & Lurdes Y. T. Inoue & Vladimir N. Minin, 2015. "A joint model for multistate disease processes and random informative observation times, with applications to electronic medical records data," Biometrics, The International Biometric Society, vol. 71(1), pages 90-101, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arielle Beyaert & Juan rez-Castej, 2000. "Switching regime models in the Spanish inter-bank market," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 93-112.
    2. P. Lencastre & F. Raischel & P. G. Lind, 2014. "The effect of the number of states on the validity of credit ratings," Papers 1409.2661, arXiv.org.
    3. Manuel D. Rossetti & Gordon M. Clark, 1999. "Moment Solutions for the State Exiting Counting Processes of a Markov Renewal Process," Methodology and Computing in Applied Probability, Springer, vol. 1(3), pages 247-275, October.
    4. Jolakoski, Petar & Pal, Arnab & Sandev, Trifce & Kocarev, Ljupco & Metzler, Ralf & Stojkoski, Viktor, 2023. "A first passage under resetting approach to income dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    5. María Luz Gámiz & Nikolaos Limnios & Mari Carmen Segovia-García, 2023. "The continuous-time hidden Markov model based on discretization. Properties of estimators and applications," Statistical Inference for Stochastic Processes, Springer, vol. 26(3), pages 525-550, October.
    6. Fuertes, Ana-Maria & Kalotychou, Elena, 2007. "On sovereign credit migration: A study of alternative estimators and rating dynamics," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3448-3469, April.
    7. Zhou, Richard, 2010. "Counterparty Risk Subject To ATE," MPRA Paper 28067, University Library of Munich, Germany.
    8. Zhou, Yifan & Zhang, Zhisheng & Lin, Tian Ran & Ma, Lin, 2013. "Maintenance optimisation of a multi-state series–parallel system considering economic dependence and state-dependent inspection intervals," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 248-259.
    9. Driffill, John & Sola, Martin & Kenc, Turalay & Spagnolo, Fabio, 2004. "On Model Selection and Markov Switching: A Empirical Examination of Term Structure Models with Regime Shifts," CEPR Discussion Papers 4165, C.E.P.R. Discussion Papers.
    10. Georges Dionne & Geneviève Gauthier & Khemais Hammami & Mathieu Maurice & Jean‐Guy Simonato, 2010. "Default Risk in Corporate Yield Spreads," Financial Management, Financial Management Association International, vol. 39(2), pages 707-731, June.
    11. Dionne, Georges & Gauthier, Geneviève & Hammami, Khemais & Maurice, Mathieu & Simonato, Jean-Guy, 2011. "A reduced form model of default spreads with Markov-switching macroeconomic factors," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1984-2000, August.
    12. Ahmed Belhadjayed & Grégoire Loeper & Frédéric Abergel, 2016. "Forecasting Trends With Asset Prices," Post-Print hal-01512431, HAL.
    13. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    14. Genon-Catalot, Valentine, 2003. "A non-linear explicit filter," Statistics & Probability Letters, Elsevier, vol. 61(2), pages 145-154, January.
    15. Lacour, Claire, 2008. "Adaptive estimation of the transition density of a particular hidden Markov chain," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 787-814, May.
    16. Jörn Dannemann & Hajo Holzmann, 2008. "Likelihood Ratio Testing for Hidden Markov Models Under Non‐standard Conditions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 309-321, June.
    17. Zhao, Haibing & Fung, Wing Kam, 2016. "A powerful FDR control procedure for multiple hypotheses," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 60-70.
    18. Massimo Guidolin, 2013. "Markov switching models in asset pricing research," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 1, pages 3-44, Edward Elgar Publishing.
    19. Til Schuermann & Yusuf Jafry, 2003. "Measurement and Estimation of Credit Migration Matrices," Center for Financial Institutions Working Papers 03-08, Wharton School Center for Financial Institutions, University of Pennsylvania.
    20. Hautphenne, Sophie & Fackrell, Mark, 2014. "An EM algorithm for the model fitting of Markovian binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 19-34.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:504-517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.