IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v57y2013i1p504-517.html
   My bibliography  Save this article

An EM algorithm for continuous-time bivariate Markov chains

Author

Listed:
  • Mark, Brian L.
  • Ephraim, Yariv

Abstract

We study properties and parameter estimation of a finite-state, homogeneous, continuous-time, bivariate Markov chain. Only one of the two processes of the bivariate Markov chain is assumed observable. The general form of the bivariate Markov chain studied here makes no assumptions on the structure of the generator of the chain. Consequently, simultaneous jumps of the observable and underlying processes are possible, neither process is necessarily Markov, and the time between jumps of each of the two processes has a phase-type distribution. Examples of bivariate Markov chains include the Markov modulated Poisson process and the batch Markovian arrival process when appropriate modulo counts are used in each case. We develop an expectation–maximization (EM) procedure for estimating the generator of a bivariate Markov chain, and we demonstrate its performance. The procedure does not rely on any numerical integration or sampling scheme of the continuous-time bivariate Markov chain. The proposed EM algorithm is equally applicable to multivariate Markov chains.

Suggested Citation

  • Mark, Brian L. & Ephraim, Yariv, 2013. "An EM algorithm for continuous-time bivariate Markov chains," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 504-517.
  • Handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:504-517
    DOI: 10.1016/j.csda.2012.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312002915
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.07.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leroux, Brian G., 1992. "Maximum-likelihood estimation for hidden Markov models," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 127-143, February.
    2. Robert B. Israel & Jeffrey S. Rosenthal & Jason Z. Wei, 2001. "Finding Generators for Markov Chains via Empirical Transition Matrices, with Applications to Credit Ratings," Mathematical Finance, Wiley Blackwell, vol. 11(2), pages 245-265, April.
    3. Lothar Breuer, 2002. "An EM Algorithm for Batch Markovian Arrival Processes and its Comparison to a Simpler Estimation Procedure," Annals of Operations Research, Springer, vol. 112(1), pages 123-138, April.
    4. Erhan Çinlar, 1975. "Exceptional Paper--Markov Renewal Theory: A Survey," Management Science, INFORMS, vol. 21(7), pages 727-752, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jane M. Lange & Rebecca A. Hubbard & Lurdes Y. T. Inoue & Vladimir N. Minin, 2015. "A joint model for multistate disease processes and random informative observation times, with applications to electronic medical records data," Biometrics, The International Biometric Society, vol. 71(1), pages 90-101, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. Lencastre & F. Raischel & P. G. Lind, 2014. "The effect of the number of states on the validity of credit ratings," Papers 1409.2661, arXiv.org.
    2. Jolakoski, Petar & Pal, Arnab & Sandev, Trifce & Kocarev, Ljupco & Metzler, Ralf & Stojkoski, Viktor, 2023. "A first passage under resetting approach to income dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    3. María Luz Gámiz & Nikolaos Limnios & Mari Carmen Segovia-García, 2023. "The continuous-time hidden Markov model based on discretization. Properties of estimators and applications," Statistical Inference for Stochastic Processes, Springer, vol. 26(3), pages 525-550, October.
    4. Zhou, Richard, 2010. "Counterparty Risk Subject To ATE," MPRA Paper 28067, University Library of Munich, Germany.
    5. Georges Dionne & Geneviève Gauthier & Khemais Hammami & Mathieu Maurice & Jean‐Guy Simonato, 2010. "Default Risk in Corporate Yield Spreads," Financial Management, Financial Management Association International, vol. 39(2), pages 707-731, June.
    6. Ahmed Belhadjayed & Grégoire Loeper & Frédéric Abergel, 2016. "Forecasting Trends With Asset Prices," Post-Print hal-01512431, HAL.
    7. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    8. Genon-Catalot, Valentine, 2003. "A non-linear explicit filter," Statistics & Probability Letters, Elsevier, vol. 61(2), pages 145-154, January.
    9. Jörn Dannemann & Hajo Holzmann, 2008. "Likelihood Ratio Testing for Hidden Markov Models Under Non‐standard Conditions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 309-321, June.
    10. Massimo Guidolin, 2013. "Markov switching models in asset pricing research," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 1, pages 3-44, Edward Elgar Publishing.
    11. Hautphenne, Sophie & Fackrell, Mark, 2014. "An EM algorithm for the model fitting of Markovian binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 19-34.
    12. Yera, Yoel G. & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2019. "Fitting procedure for the two-state Batch Markov modulated Poisson process," European Journal of Operational Research, Elsevier, vol. 279(1), pages 79-92.
    13. Anton Molyboha & Michael Zabarankin, 2012. "Stochastic Optimization of Sensor Placement for Diver Detection," Operations Research, INFORMS, vol. 60(2), pages 292-312, April.
    14. Blöchlinger, Andreas, 2011. "Arbitrage-free credit pricing using default probabilities and risk sensitivities," Journal of Banking & Finance, Elsevier, vol. 35(2), pages 268-281, February.
    15. Pierre Guérin & Danilo Leiva-Leon & Massimiliano Marcellino, 2020. "Markov-Switching Three-Pass Regression Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 285-302, April.
    16. Areski Cousin & Mohamed Reda Kheliouen, 2016. "A comparative study on the estimation of factor migration models," Working Papers halshs-01351926, HAL.
    17. Aleka Papadopoulou & George Tsaklidis, 2007. "Some Reward Paths in Semi-Markov Models with Stochastic Selection of the Transition Probabilities," Methodology and Computing in Applied Probability, Springer, vol. 9(3), pages 399-411, September.
    18. Linda Möstel & Marius Pfeuffer & Matthias Fischer, 2020. "Statistical inference for Markov chains with applications to credit risk," Computational Statistics, Springer, vol. 35(4), pages 1659-1684, December.
    19. Tamás Kristóf, 2021. "Sovereign Default Forecasting in the Era of the COVID-19 Crisis," JRFM, MDPI, vol. 14(10), pages 1-24, October.
    20. Dimitri frosinin & L. Breuer, 2006. "Threshold policies for controlled retrial queues with heterogeneous servers," Annals of Operations Research, Springer, vol. 141(1), pages 139-162, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:504-517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.