IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i12p4165-4179.html
   My bibliography  Save this article

Bayesian multi-regime smooth transition regression with ordered categorical variables

Author

Listed:
  • Wang, Jianqiang C.
  • Holan, Scott H.

Abstract

Multivariate time series are ubiquitous among a broad array of applications and often include both categorical and continuous series. Further, in many contexts, the continuous variable behaves nonlinearly conditional on a categorical time series. To accommodate the complexity of this structure, we propose a multi-regime smooth transition model where the transition variable is derived from the categorical time series and the degree of smoothness in transitioning between regimes is estimated from the data. The joint model for the continuous and ordinal time series is developed using a Bayesian hierarchical approach and thus, naturally, quantifies different sources of uncertainty. Additionally, we allow a general number of regimes in the smooth transition model and, for estimation, propose an efficient Markov chain Monte Carlo algorithm by blocking the parameters. Moreover, the model can be effectively used to draw inference on the behavior within and between regimes, as well as inference on regime probabilities. In order to demonstrate the frequentist properties of the proposed Bayesian estimators, we present the results of a comprehensive simulation study. Finally, we illustrate the utility of the proposed model through the analysis of two macroeconomic time series.

Suggested Citation

  • Wang, Jianqiang C. & Holan, Scott H., 2012. "Bayesian multi-regime smooth transition regression with ordered categorical variables," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4165-4179.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:12:p:4165-4179
    DOI: 10.1016/j.csda.2012.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731200182X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    2. Ginger M. Davis & Katherine B. Ensor, 2007. "Multivariate Time‐Series Analysis With Categorical and Continuous Variables in an Lstr Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(6), pages 867-885, November.
    3. Hedibert F. Lopes & Esther Salazar, 2006. "Bayesian Model Uncertainty In Smooth Transition Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(1), pages 99-117, January.
    4. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    7. James H. Albert & Siddhartha Chib, 2001. "Sequential Ordinal Modeling with Applications to Survival Data," Biometrics, The International Biometric Society, vol. 57(3), pages 829-836, September.
    8. repec:bla:jecsur:v:13:y:1999:i:5:p:505-28 is not listed on IDEAS
    9. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    10. Simon Potter, 1999. "Nonlinear Time Series Modelling: An Introduction," Journal of Economic Surveys, Wiley Blackwell, vol. 13(5), pages 505-528, December.
    11. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
    2. Rinke Saskia & Sibbertsen Philipp, 2016. "Information criteria for nonlinear time series models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(3), pages 325-341, June.
    3. Elliott Robert J. & Siu Tak Kuen & Lau John W., 2018. "A hidden Markov regime-switching smooth transition model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(4), pages 1-21, September.
    4. Amendola, Alessandra & Christian, Francq, 2009. "Concepts and tools for nonlinear time series modelling," MPRA Paper 15140, University Library of Munich, Germany.
    5. Glen Livingston & Darfiana Nur, 2020. "Bayesian inference of smooth transition autoregressive (STAR)(k)–GARCH(l, m) models," Statistical Papers, Springer, vol. 61(6), pages 2449-2482, December.
    6. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    7. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    8. Mohamed CHIKHI & Claude DIEBOLT, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
    9. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    10. Kosater, Peter & Mosler, Karl, 2006. "Can Markov regime-switching models improve power-price forecasts? Evidence from German daily power prices," Applied Energy, Elsevier, vol. 83(9), pages 943-958, September.
    11. Gorgi, P. & Koopman, S.J., 2023. "Beta observation-driven models with exogenous regressors: A joint analysis of realized correlation and leverage effects," Journal of Econometrics, Elsevier, vol. 237(2).
    12. Bai, Zhidong & Hui, Yongchang & Wong, Wing-Keung, 2012. "New Non-Linearity Test to Circumvent the Limitation of Volterra Expansion," MPRA Paper 41872, University Library of Munich, Germany.
    13. Arjun Prakash & Nick James & Max Menzies & Gilad Francis, 2020. "Structural clustering of volatility regimes for dynamic trading strategies," Papers 2004.09963, arXiv.org, revised Nov 2021.
    14. Michael McAleer & Marcelo C. Medeiros, 2009. "Forecasting Realized Volatility with Linear and Nonlinear Models," CARF F-Series CARF-F-189, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    15. Martinez Oscar & Olmo Jose, 2012. "A Nonlinear Threshold Model for the Dependence of Extremes of Stationary Sequences," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-39, September.
    16. Timmermann, Allan & Patton, Andrew, 2003. "Properties of Optimal Forecasts," CEPR Discussion Papers 4037, C.E.P.R. Discussion Papers.
    17. S. Yaser Samadi & Tharindu P. De Alwis, 2023. "Fourier Methods for Sufficient Dimension Reduction in Time Series," Papers 2312.02110, arXiv.org.
    18. Jean-Paul Chavas, 2017. "Agroecosystem Productivity and the Dynamic Response to Shocks," NBER Chapters, in: The Economics of Poverty Traps, pages 291-314, National Bureau of Economic Research, Inc.
    19. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2012. "Was the Recent Downturn in US GDP Predictable?," Working Papers 1210, University of Nevada, Las Vegas , Department of Economics.
    20. Aliyu, Shehu Usman Rano, 2020. "What have we learnt from modelling stock returns in Nigeria: Higgledy-piggledy?," MPRA Paper 110382, University Library of Munich, Germany, revised 06 Jun 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:12:p:4165-4179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.