IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i11p2836-2849.html
   My bibliography  Save this article

A linearly distributed lag estimator with r-convex coefficients

Author

Listed:
  • Vassiliou, E.E.
  • Demetriou, I.C.

Abstract

The purpose of linearly distributed lag models is to estimate, from time series data, values of the dependent variable by incorporating prior information of the independent variable. A least-squares calculation is proposed for estimating the lag coefficients subject to the condition that the rth differences of the coefficients are non-negative, where r is a prescribed positive integer. Such priors do not assume any parameterization of the coefficients, and in several cases they provide such an accurate representation of the prior knowledge, so as to compare favorably to established methods. In particular, the choice of the prior knowledge parameter r gives the lag coefficients interesting special features such as monotonicity, convexity, convexity/concavity, etc. The proposed estimation problem is a strictly convex quadratic programming calculation, where each of the constraint functions depends on r+1 adjacent lag coefficients multiplied by the binomial numbers with alternating signs that arise in the expansion of the rth power of (1-1). The most distinctive feature of this calculation is the Toeplitz structure of the constraint coefficient matrix, which allows the development of a special active set method that is faster than general quadratic programming algorithms. Most of this efficiency is due to reducing the equality constrained minimization calculations, which occur during the quadratic programming iterations, to unconstrained minimization ones that depend on much fewer variables. Some examples with real and simulated data are presented in order to illustrate this approach.

Suggested Citation

  • Vassiliou, E.E. & Demetriou, I.C., 2010. "A linearly distributed lag estimator with r-convex coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2836-2849, November.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:11:p:2836-2849
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00044-7
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Polasek, Wolfgang, 1990. "Vector distributed lag models with smoothness priors," Computational Statistics & Data Analysis, Elsevier, vol. 10(2), pages 133-141, October.
    2. Harezlak, Jaroslaw & Coull, Brent A. & Laird, Nan M. & Magari, Shannon R. & Christiani, David C., 2007. "Penalized solutions to functional regression problems," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4911-4925, June.
    3. Shiller, Robert J, 1973. "A Distributed Lag Estimator Derived from Smoothness Priors," Econometrica, Econometric Society, vol. 41(4), pages 775-788, July.
    4. Corradi, Corrado, 1977. "Smooth distributed lag estimators and smoothing spline functions in Hilbert spaces," Journal of Econometrics, Elsevier, vol. 5(2), pages 211-219, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger D. Peng & Francesca Dominici & Leah J. Welty, 2009. "A Bayesian hierarchical distributed lag model for estimating the time course of risk of hospitalization associated with particulate matter air pollution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 3-24, February.
    2. Winkelried, Diego, 2012. "Predicting quarterly aggregates with monthly indicators," Working Papers 2012-023, Banco Central de Reserva del Perú.
    3. Koop, Gary & Poirier, Dale J., 2004. "Bayesian variants of some classical semiparametric regression techniques," Journal of Econometrics, Elsevier, vol. 123(2), pages 259-282, December.
    4. Philipp Piribauer & Jesús Crespo Cuaresma, 2016. "Bayesian Variable Selection in Spatial Autoregressive Models," Spatial Economic Analysis, Taylor & Francis Journals, vol. 11(4), pages 457-479, October.
    5. Nobuhisa Kashiwagi, 1993. "On use of the Kalman filter for spatial smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(1), pages 21-34, March.
    6. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    7. E. Dinenis & S. K. Staikouras, 1998. "Interest rate changes and common stock returns of financial institutions: evidence from the UK," The European Journal of Finance, Taylor & Francis Journals, vol. 4(2), pages 113-127.
    8. Benjamin M. Friedman & V. Vance Roley, 1977. "Identifying Identical Distributed Lag Structures by the Use of Prior SumConstraints," NBER Working Papers 0179, National Bureau of Economic Research, Inc.
    9. John F. Wilson, 1976. "Have geometric lag hypotheses outlived their time? some evidence in a Monte Carlo framework," International Finance Discussion Papers 82, Board of Governors of the Federal Reserve System (U.S.).
    10. Priya Ranjan & Justin L. Tobias, 2007. "Bayesian inference for the gravity model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(4), pages 817-838.
    11. Mark Gersovitz & James G. MacKinnon, 1977. "Seasonality in Regression: An Application of Smoothness Priors," Working Paper 257, Economics Department, Queen's University.
    12. Paul A. Anderson, 1979. "Help for the regional economic forecaster: vector autoregression," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 3(Sum).
    13. Dew-Becker, Ian & Nathanson, Charles G., 2019. "Directed attention and nonparametric learning," Journal of Economic Theory, Elsevier, vol. 181(C), pages 461-496.
    14. Venkateswaran, Meenakshi & Kinnucan, Henry W. & Chang, Hui-Shung, 1993. "Modeling Advertising Carryover in Fluid Milk: Comparison of Alternative Lag Specifications," Agricultural and Resource Economics Review, Cambridge University Press, vol. 22(1), pages 10-19, April.
    15. José A. Hernández, 2005. "A note on the asymptotic efficiency of the restricted estimation," Documentos de trabajo conjunto ULL-ULPGC 2005-01, Facultad de Ciencias Económicas de la ULPGC.
    16. Allen McDowell, 2004. "From the help desk: Polynomial distributed lag models," Stata Journal, StataCorp LP, vol. 4(2), pages 180-189, June.
    17. Thirtle, C. & Bottomley, P., 1988. "Explaining Total Factor Productivity Change: Returns to R & D in U.K. Agricultural Research," Manchester Working Papers in Agricultural Economics 232809, University of Manchester, School of Economics, Agricultural Economics Department.
    18. Ruiyan Luo & Xin Qi, 2022. "Restricted function‐on‐function linear regression model," Biometrics, The International Biometric Society, vol. 78(3), pages 1031-1044, September.
    19. Chen, Haitao & Zhang, Bin & Liu, Hua & Cao, Jiguo, 2024. "The inequality in household electricity consumption due to temperature change: Data driven analysis with a function-on-function linear model," Energy, Elsevier, vol. 288(C).
    20. Robert B. Litterman, 1979. "Techniques of forecasting using vector autoregressions," Working Papers 115, Federal Reserve Bank of Minneapolis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:11:p:2836-2849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.