IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i10p2317-2327.html
   My bibliography  Save this article

Statistical simulation and the distribution of distances between identical elements in a random sequence

Author

Listed:
  • Zörnig, Peter

Abstract

We study the distributions of distances between identical elements of a random sequence (e.g. a sequence of coin tosses or die tosses). We provide methods to generate observations by means of a statistical simulation and show in particular that distributions of multiple distances obey a linear or geometric (mixture) probability model, respectively. The results are useful to discover certain structures in texts or other information strings.

Suggested Citation

  • Zörnig, Peter, 2010. "Statistical simulation and the distribution of distances between identical elements in a random sequence," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2317-2327, October.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:10:p:2317-2327
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00006-X
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eduardo G Altmann & Janet B Pierrehumbert & Adilson E Motter, 2009. "Beyond Word Frequency: Bursts, Lulls, and Scaling in the Temporal Distributions of Words," PLOS ONE, Public Library of Science, vol. 4(11), pages 1-7, November.
    2. Zornig, Peter & Altmann, Gabriel, 1995. "Unified representation of Zipf distributions," Computational Statistics & Data Analysis, Elsevier, vol. 19(4), pages 461-473, April.
    3. Fenner, Trevor & Levene, Mark & Loizou, George, 2005. "A stochastic evolutionary model exhibiting power-law behaviour with an exponential cutoff," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(2), pages 641-656.
    4. Naumis, G.G. & Cocho, G., 2008. "Tail universalities in rank distributions as an algebraic problem: The beta-like function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 84-96.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwame Boamah‐Addo & Tomasz J. Kozubowski & Anna K. Panorska, 2023. "A discrete truncated Zipf distribution," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 156-187, May.
    2. Fenner, Trevor & Levene, Mark & Loizou, George, 2010. "Predicting the long tail of book sales: Unearthing the power-law exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(12), pages 2416-2421.
    3. Eduardo G Altmann & Janet B Pierrehumbert & Adilson E Motter, 2011. "Niche as a Determinant of Word Fate in Online Groups," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-12, May.
    4. Valerio Ficcadenti & Roy Cerqueti & Ciro Hosseini Varde’i, 2023. "A rank-size approach to analyse soccer competitions and teams: the case of the Italian football league “Serie A"," Annals of Operations Research, Springer, vol. 325(1), pages 85-113, June.
    5. Contreras-Reyes, Javier E., 2021. "Lerch distribution based on maximum nonsymmetric entropy principle: Application to Conway’s game of life cellular automaton," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Kumiko Tanaka-Ishii & Armin Bunde, 2016. "Long-Range Memory in Literary Texts: On the Universal Clustering of the Rare Words," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-14, November.
    7. Heng Chen & Haitao Liu, 2018. "Quantifying Evolution of Short and Long-Range Correlations in Chinese Narrative Texts across 2000 Years," Complexity, Hindawi, vol. 2018, pages 1-12, February.
    8. Ausloos, Marcel & Cerqueti, Roy & Lupi, Claudio, 2017. "Long-range properties and data validity for hydrogeological time series: The case of the Paglia river," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 39-50.
    9. Izsak, F., 2006. "Maximum likelihood estimation for constrained parameters of multinomial distributions--Application to Zipf-Mandelbrot models," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1575-1583, December.
    10. Espitia, Diego & Larralde, Hernán, 2020. "Universal and non-universal text statistics: Clustering coefficient for language identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    11. Cui, Xue-Mei & Yoon, Chang No & Youn, Hyejin & Lee, Sang Hoon & Jung, Jean S. & Han, Seung Kee, 2017. "Dynamic burstiness of word-occurrence and network modularity in textbook systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 103-110.
    12. Cerqueti, Roy & Lupi, Claudio & Pietrovito, Filomena & Pozzolo, Alberto Franco, 2022. "Rank–size distributions for banks: A cross-country analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    13. Karain, Wael I., 2019. "Investigating large-amplitude protein loop motions as extreme events using recurrence interval analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 1-10.
    14. Young, D.S., 2013. "Approximate tolerance limits for Zipf–Mandelbrot distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1702-1711.
    15. Criado-Alonso, Ángeles & Aleja, David & Romance, Miguel & Criado, Regino, 2022. "Derivative of a hypergraph as a tool for linguistic pattern analysis," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    16. Christian H. Weiß, 2013. "Integer-valued autoregressive models for counts showing underdispersion," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(9), pages 1931-1948, September.
    17. Serguei Saavedra & Jordi Duch & Brian Uzzi, 2011. "Tracking Traders' Understanding of the Market Using e-Communication Data," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-7, October.
    18. Chen, Yanguang, 2012. "The mathematical relationship between Zipf’s law and the hierarchical scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3285-3299.
    19. Shuntaro Takahashi & Kumiko Tanaka-Ishii, 2017. "Do neural nets learn statistical laws behind natural language?," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-17, December.
    20. Valero, Jordi & Pérez-Casany, Marta & Duarte-López, Ariel, 2022. "The Zipf-Polylog distribution: Modeling human interactions through social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:10:p:2317-2327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.