IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i10p2244-2252.html
   My bibliography  Save this article

A multivariate control chart for simultaneously monitoring process mean and variability

Author

Listed:
  • Zhang, Jiujun
  • Li, Zhonghua
  • Wang, Zhaojun

Abstract

Recently, monitoring the process mean and variability simultaneously for multivariate processes by using a single control chart has drawn some attention. However, due to the complexity of multivariate distributions, existing methods in univariate processes cannot be readily extended to multivariate processes. In this paper, we propose a new single control chart which integrates the exponentially weighted moving average (EWMA) procedure with the generalized likelihood ratio (GLR) test for jointly monitoring both the multivariate process mean and variability. Due to the powerful properties of the GLR test and the EWMA procedure, the new chart provides quite robust and satisfactory performance in various cases, including detection of the decrease in variability and individual observation at the sampling point, which are very important cases in many practical applications but may not be well handled by existing approaches in the literature. The application of our proposed method is illustrated by a real data example in ambulatory monitoring.

Suggested Citation

  • Zhang, Jiujun & Li, Zhonghua & Wang, Zhaojun, 2010. "A multivariate control chart for simultaneously monitoring process mean and variability," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2244-2252, October.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:10:p:2244-2252
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00129-5
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shu, Lianjie & Jiang, Wei & Wu, Zhang, 2008. "Adaptive CUSUM procedures with Markovian mean estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4395-4409, May.
    2. Arthur Yeh & Dennis Lin & Honghong Zhou & Chandramouliswaran Venkataramani, 2003. "A multivariate exponentially weighted moving average control chart for monitoring process variability," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(5), pages 507-536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mitra, Amitava & Lee, Kang Bok & Chakraborti, Subhabrata, 2019. "An adaptive exponentially weighted moving average-type control chart to monitor the process mean," European Journal of Operational Research, Elsevier, vol. 279(3), pages 902-911.
    2. Hyeon-Ah Kang, 2023. "Sequential Generalized Likelihood Ratio Tests for Online Item Monitoring," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 672-696, June.
    3. Robert Garthoff & Iryna Okhrin & Wolfgang Schmid, 2014. "Statistical surveillance of the mean vector and the covariance matrix of nonlinear time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(3), pages 225-255, July.
    4. Hamed Sabahno & Seyed Taghi Akhavan Niaki, 2023. "New Machine-Learning Control Charts for Simultaneous Monitoring of Multivariate Normal Process Parameters with Detection and Identification," Mathematics, MDPI, vol. 11(16), pages 1-31, August.
    5. Ahmad, Shabbir & Riaz, Muhammad & Abbasi, Saddam Akber & Lin, Zhengyan, 2013. "On monitoring process variability under double sampling scheme," International Journal of Production Economics, Elsevier, vol. 142(2), pages 388-400.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Qin & Luo, Yunzhao & Wang, Zhaojun, 2010. "A control chart based on likelihood ratio test for detecting patterned mean and variance shifts," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1634-1645, June.
    2. Su, Yan & Shu, Lianjie & Tsui, Kwok-Leung, 2011. "Adaptive EWMA procedures for monitoring processes subject to linear drifts," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2819-2829, October.
    3. Maravelakis, Petros E. & Castagliola, Philippe, 2009. "An EWMA chart for monitoring the process standard deviation when parameters are estimated," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2653-2664, May.
    4. Machado, Marcela A.G. & Costa, Antonio F.B., 2008. "The double sampling and the EWMA charts based on the sample variances," International Journal of Production Economics, Elsevier, vol. 114(1), pages 134-148, July.
    5. de Oliveira Ventura, Lucas & Melo, Joel D. & Padilha-Feltrin, Antonio & Fernández-Gutiérrez, Juan Pablo & Sánchez Zuleta, Carmen C. & Piedrahita Escobar, Carlos César, 2020. "A new way for comparing solutions to non-technical electricity losses in South America," Utilities Policy, Elsevier, vol. 67(C).
    6. Zhang, Min & Nie, Guohua & He, Zhen, 2014. "Performance of cumulative count of conforming chart of variable sampling intervals with estimated control limits," International Journal of Production Economics, Elsevier, vol. 150(C), pages 114-124.
    7. Frisén, Marianne, 2011. "Inference Principles For Multivariate Surveillance," Research Reports 2011:5, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    8. Dariush Najarzadeh, 2019. "Testing equality of standardized generalized variances of k multivariate normal populations with arbitrary dimensions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 593-623, December.
    9. Wu, Zhang & Yang, Mei & Jiang, Wei & Khoo, Michael B.C., 2008. "Optimization designs of the combined Shewhart-CUSUM control charts," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 496-506, December.
    10. Pei-Hsi Lee & Yi-Hsien Huang & Tsen-I Kuo & Ching-Cheng Wang, 2013. "The effect of the individual chart with variable control limits on the river pollution monitoring," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(4), pages 1803-1812, June.
    11. Bock, David, 2007. "Consequences of using the probability of a false alarm as the false alarm measure," Research Reports 2007:3, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    12. Zekâi Şen, 2024. "Moving Trend Analysis Methodology for Hydro-meteorology Time Series Dynamic Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(11), pages 4415-4429, September.
    13. Sánchez, Ismael, 2015. "Adaptive EWMA Control Charts with a Time Varying Smoothing Parameter," DES - Working Papers. Statistics and Econometrics. WS ws1507, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Ahmad, Shabbir & Riaz, Muhammad & Abbasi, Saddam Akber & Lin, Zhengyan, 2013. "On monitoring process variability under double sampling scheme," International Journal of Production Economics, Elsevier, vol. 142(2), pages 388-400.
    15. Luo, Yunzhao & Li, Zhonghua & Wang, Zhaojun, 2009. "Adaptive CUSUM control chart with variable sampling intervals," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2693-2701, May.
    16. Frisén, Marianne, 2011. "On multivariate control charts," Research Reports 2011:2, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.
    17. David Bock, 2008. "Aspects on the control of false alarms in statistical surveillance and the impact on the return of financial decision systems," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(2), pages 213-227.
    18. Lee, Pei-Hsi, 2011. "Adaptive R charts with variable parameters," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 2003-2010, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:10:p:2244-2252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.