IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i5p1755-1766.html
   My bibliography  Save this article

The use of plasmodes as a supplement to simulations: A simple example evaluating individual admixture estimation methodologies

Author

Listed:
  • Vaughan, Laura K.
  • Divers, Jasmin
  • Padilla, Miguel A.
  • Redden, David T.
  • Tiwari, Hemant K.
  • Pomp, Daniel
  • Allison, David B.

Abstract

With the advent of powerful computers, simulation studies are becoming an important tool in statistical methodology research. However, computer simulations of a specific process are only as good as our understanding of the underlying mechanisms. An attractive supplement to simulations is the use of plasmode datasets. Plasmodes are data sets that are generated by natural biologic processes, under experimental conditions that allow some aspect of the truth to be known. The benefit of the plasmode approach is that the data are generated through completely natural processes, thus circumventing the common concern of the realism and accuracy of computer simulated data. The estimation of admixture, or the proportion of an individual's genome that originates from different founding populations, is a particularly difficult research endeavor that is well suited to the use of plasmodes. Current methods have been tested with simulations of complex populations where the underlying mechanisms such as the rate and distribution of recombination are not well understood. To demonstrate the utility of this method, data derived from mouse crosses is used to evaluate the effectiveness of several admixture estimation methodologies. Each cross shares a common founding population so that the ancestry proportion for each individual is known, allowing for the comparison of true and estimated individual admixture values. Analysis shows that the different estimation methodologies (Structure, AdmixMap and FRAPPE) examined all perform well with simple datasets. However, the performance of the estimation methodologies varied greatly when applied to a plasmode consisting of three founding populations. The results of these examples illustrate the utility of plasmodes in the evaluation of statistical genetics methodologies.

Suggested Citation

  • Vaughan, Laura K. & Divers, Jasmin & Padilla, Miguel A. & Redden, David T. & Tiwari, Hemant K. & Pomp, Daniel & Allison, David B., 2009. "The use of plasmodes as a supplement to simulations: A simple example evaluating individual admixture estimation methodologies," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1755-1766, March.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:5:p:1755-1766
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00085-6
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Noah A Rosenberg & Saurabh Mahajan & Sohini Ramachandran & Chengfeng Zhao & Jonathan K Pritchard & Marcus W Feldman, 2005. "Clines, Clusters, and the Effect of Study Design on the Inference of Human Population Structure," PLOS Genetics, Public Library of Science, vol. 1(6), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franklin, Jessica M. & Schneeweiss, Sebastian & Polinski, Jennifer M. & Rassen, Jeremy A., 2014. "Plasmode simulation for the evaluation of pharmacoepidemiologic methods in complex healthcare databases," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 219-226.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nick Patterson & Alkes L Price & David Reich, 2006. "Population Structure and Eigenanalysis," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-20, December.
    2. Giuliano, Paola & Spilimbergo, Antonio & Tonon, Giovanni, 2006. "Genetic, Cultural and Geographical Distances," IZA Discussion Papers 2229, Institute of Labor Economics (IZA).
    3. Ramachandran, Sohini & Rosenberg, Noah A. & Feldman, Marcus W. & Wakeley, John, 2008. "Population differentiation and migration: Coalescence times in a two-sex island model for autosomal and X-linked loci," Theoretical Population Biology, Elsevier, vol. 74(4), pages 291-301.
    4. Arbisser, Ilana M. & Rosenberg, Noah A., 2020. "FST and the triangle inequality for biallelic markers," Theoretical Population Biology, Elsevier, vol. 133(C), pages 117-129.
    5. Ting Fung Ma & Fangfang Wang & Jun Zhu, 2023. "On generalized latent factor modeling and inference for high‐dimensional binomial data," Biometrics, The International Biometric Society, vol. 79(3), pages 2311-2320, September.
    6. Szpiech, Zachary A. & Rosenberg, Noah A., 2011. "On the size distribution of private microsatellite alleles," Theoretical Population Biology, Elsevier, vol. 80(2), pages 100-113.
    7. Ricardo Kanitz & Elsa G Guillot & Sylvain Antoniazza & Samuel Neuenschwander & Jérôme Goudet, 2018. "Complex genetic patterns in human arise from a simple range-expansion model over continental landmasses," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-16, February.
    8. Liu Xiran & Ahsan Zarif & Martheswaran Tarun K. & Rosenberg Noah A., 2023. "When is the allele-sharing dissimilarity between two populations exceeded by the allele-sharing dissimilarity of a population with itself?," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 22(1), pages 1-24, January.
    9. Eric R Londin & Margaret A Keller & Cathleen Maista & Gretchen Smith & Laura A Mamounas & Ran Zhang & Steven J Madore & Katrina Gwinn & Roderick A Corriveau, 2010. "CoAIMs: A Cost-Effective Panel of Ancestry Informative Markers for Determining Continental Origins," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-12, October.
    10. Peristera Paschou & Petros Drineas & Jamey Lewis & Caroline M Nievergelt & Deborah A Nickerson & Joshua D Smith & Paul M Ridker & Daniel I Chasman & Ronald M Krauss & Elad Ziv, 2008. "Tracing Sub-Structure in the European American Population with PCA-Informative Markers," PLOS Genetics, Public Library of Science, vol. 4(7), pages 1-13, July.
    11. Charlotte Faurie & Clement Mettling & Mohamed Ali Bchir & Danang Hadmoko & Carine Heitz & Evi Lestari & Michel Raymond & Marc Willinger, 2016. "Evidence of genotypic adaptation to the exposure to volcanic risk at the dopamine receptor DRD4 locus," Post-Print hal-02062364, HAL.
    12. Frank, Reanne, 2007. "What to make of it? The (Re)emergence of a biological conceptualization of race in health disparities research," Social Science & Medicine, Elsevier, vol. 64(10), pages 1977-1983, May.
    13. Catherine Bliss, 2015. "Science and Struggle," The ANNALS of the American Academy of Political and Social Science, , vol. 661(1), pages 86-108, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:5:p:1755-1766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.