IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i4p1015-1026.html
   My bibliography  Save this article

Collective-agreement-based pruning of ensembles

Author

Listed:
  • Rokach, Lior

Abstract

Ensemble methods combine several individual pattern classifiers in order to achieve better classification. The challenge is to choose the minimal number of classifiers that achieve the best performance. An ensemble that contains too many members might incur large storage requirements and even reduce the classification performance. The goal of ensemble pruning is to identify a subset of ensemble members that performs at least as good as the original ensemble and discard any other members. In this paper, we introduce the Collective-Agreement-based Pruning (CAP) method. Rather than ranking individual members, CAP ranks subsets by considering the individual predictive ability of each member along with the degree of redundancy among them. Subsets whose members highly agree with the class while having low inter-agreement are preferred.

Suggested Citation

  • Rokach, Lior, 2009. "Collective-agreement-based pruning of ensembles," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1015-1026, February.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:1015-1026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00570-7
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moskovitch, Robert & Elovici, Yuval & Rokach, Lior, 2008. "Detection of unknown computer worms based on behavioral classification of the host," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4544-4566, May.
    2. Menahem, Eitan & Shabtai, Asaf & Rokach, Lior & Elovici, Yuval, 2009. "Improving malware detection by applying multi-inducer ensemble," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1483-1494, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radhakrishnan Nagarajan & Craig S Miller & Dolph Dawson III & Mohanad Al-Sabbagh & Jeffrey L Ebersole, 2015. "Patient-Specific Variations in Biomarkers across Gingivitis and Periodontitis," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-15, September.
    2. Rokach, Lior, 2009. "Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4046-4072, October.
    3. Lior Rokach, 2012. "Applying the Publication Power Approach to Artificial Intelligence Journals," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(6), pages 1270-1277, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rokach, Lior, 2009. "Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4046-4072, October.
    2. D. Thorleuchter & D. Van Den Poel, 2012. "Improved Multilevel Security with Latent Semantic Indexing," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/811, Ghent University, Faculty of Economics and Business Administration.
    3. Menahem, Eitan & Shabtai, Asaf & Rokach, Lior & Elovici, Yuval, 2009. "Improving malware detection by applying multi-inducer ensemble," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1483-1494, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:4:p:1015-1026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.