IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i3p699-706.html
   My bibliography  Save this article

A Bayesian analysis for longitudinal semicontinuous data with an application to an acupuncture clinical trial

Author

Listed:
  • Ghosh, Pulak
  • Albert, Paul S.

Abstract

In many biomedical applications, researchers encounter semicontinuous data where data are either continuous or zero. When the data are collected over time the observations may be correlated. Analysis of this kind of longitudinal semicontinuous data is challenging due to the presence of strong skewness in the data. A flexible class of zero-inflated models in a longitudinal setting is developed. A Bayesian approach is used to analyze longitudinal data from an acupuncture clinical trial, in which the effects of active acupuncture, sham acupuncture and standard medical care is compared on chemotherapy-induced nausea in patients who were treated for advanced breast cancer. A spline model is introduced into the linear predictor of the model to explore the possibility of a nonlinear treatment effect. Possible serial correlation between successive observations is also accounted using the Brownian motion. Thus, the approach taken in this paper provides for a more flexible modeling framework and, with the use of WinBUGS, provides for a computationally simpler approach than direct maximum-likelihood. The Bayesian methodology is illustrated with the acupuncture clinical trial data.

Suggested Citation

  • Ghosh, Pulak & Albert, Paul S., 2009. "A Bayesian analysis for longitudinal semicontinuous data with an application to an acupuncture clinical trial," Computational Statistics & Data Analysis, Elsevier, vol. 53(3), pages 699-706, January.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:3:p:699-706
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00446-5
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, October.
    2. Sturtz, Sibylle & Ligges, Uwe & Gelman, Andrew, 2005. "R2WinBUGS: A Package for Running WinBUGS from R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i03).
    3. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492, National Bureau of Economic Research, Inc.
    4. Zhang, Min & Strawderman, Robert L. & Cowen, Mark E. & Wells, Martin T., 2006. "Bayesian Inference for a Two-Part Hierarchical Model: An Application to Profiling Providers in Managed Health Care," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 934-945, September.
    5. Duan, Naihua, et al, 1983. "A Comparison of Alternative Models for the Demand for Medical Care," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 115-126, April.
    6. Paul S. Albert & Joannie Shen, 2005. "Modelling longitudinal semicontinuous emesis volume data with serial correlation in an acupuncture clinical trial," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(4), pages 707-720, August.
    7. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    8. Robinson, John W. & Zeger, Scott L. & Forrest, Christopher B., 2006. "A Hierarchical Multivariate Two-Part Model for Profiling Providers' Effects on Health Care Charges," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 911-923, September.
    9. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Peng & Feng, Xiaoping & Ivantsova, Anastasia, 2015. "Dependent frequency–severity modeling of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 417-428.
    2. Brian Neelon & A. James O'Malley & Sharon-Lise T. Normand, 2011. "A Bayesian Two-Part Latent Class Model for Longitudinal Medical Expenditure Data: Assessing the Impact of Mental Health and Substance Abuse Parity," Biometrics, The International Biometric Society, vol. 67(1), pages 280-289, March.
    3. Yang, Yan & Simpson, Douglas, 2010. "Unified computational methods for regression analysis of zero-inflated and bound-inflated data," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1525-1534, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuguerra Maurizio & Heller Gillian Z, 2010. "Ordinal Regression Models for Continuous Scales," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-20, April.
    2. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    3. Liu, Lei & Strawderman, Robert L. & Cowen, Mark E. & Shih, Ya-Chen T., 2010. "A flexible two-part random effects model for correlated medical costs," Journal of Health Economics, Elsevier, vol. 29(1), pages 110-123, January.
    4. Jullion, Astrid & Lambert, Philippe, 2007. "Robust specification of the roughness penalty prior distribution in spatially adaptive Bayesian P-splines models," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2542-2558, February.
    5. Brezger, Andreas & Kneib, Thomas & Lang, Stefan, 2005. "BayesX: Analyzing Bayesian Structural Additive Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 14(i11).
    6. Liu, Lei & Conaway, Mark R. & Knaus, William A. & Bergin, James D., 2008. "A random effects four-part model, with application to correlated medical costs," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4458-4473, May.
    7. Congdon, Peter, 2006. "A model for non-parametric spatially varying regression effects," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 422-445, January.
    8. Thaden, Hauke & Klein, Nadja & Kneib, Thomas, 2019. "Multivariate effect priors in bivariate semiparametric recursive Gaussian models," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 51-66.
    9. Wojtyś, Małgorzata & Marra, Giampiero & Radice, Rosalba, 2018. "Copula based generalized additive models for location, scale and shape with non-random sample selection," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 1-14.
    10. Simon J. Bonner & Carl J. Schwarz, 2011. "Smoothing Population Size Estimates for Time-Stratified Mark–Recapture Experiments Using Bayesian P-Splines," Biometrics, The International Biometric Society, vol. 67(4), pages 1498-1507, December.
    11. Wang, Xiaoqing & Feng, Xiangnan & Song, Xinyuan, 2020. "Joint analysis of semicontinuous data with latent variables," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    12. Marc Aerts & Niel Hens & Jeffrey Simonoff, 2010. "Model selection in regression based on pre-smoothing," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1455-1472.
    13. Julie Vercelloni & M Julian Caley & Mohsen Kayal & Samantha Low-Choy & Kerrie Mengersen, 2014. "Understanding Uncertainties in Non-Linear Population Trajectories: A Bayesian Semi-Parametric Hierarchical Approach to Large-Scale Surveys of Coral Cover," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    14. O. Gimenez & C. Crainiceanu & C. Barbraud & S. Jenouvrier & B. J. T. Morgan, 2006. "Semiparametric Regression in Capture–Recapture Modeling," Biometrics, The International Biometric Society, vol. 62(3), pages 691-698, September.
    15. Katrien Antonio & Jan Beirlant, 2008. "Issues in Claims Reserving and Credibility: A Semiparametric Approach With Mixed Models," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(3), pages 643-676, September.
    16. Seebens, Holger, 2009. "Child Welfare and Old-Age Security in Female Headed Households in Tanzania," IZA Discussion Papers 3929, Institute of Labor Economics (IZA).
    17. Marra Giampiero & Radice Rosalba, 2017. "A joint regression modeling framework for analyzing bivariate binary data in R," Dependence Modeling, De Gruyter, vol. 5(1), pages 268-294, December.
    18. Cai, Bo & Meyer, Renate, 2011. "Bayesian semiparametric modeling of survival data based on mixtures of B-spline distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1260-1272, March.
    19. Marra, Giampiero & Wyszynski, Karol, 2016. "Semi-parametric copula sample selection models for count responses," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 110-129.
    20. Nicole H. Augustin & Stefan Lang & Monica Musio & Klaus Von Wilpert, 2007. "A spatial model for the needle losses of pine‐trees in the forests of Baden‐Württemberg: an application of Bayesian structured additive regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(1), pages 29-50, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:3:p:699-706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.