IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i10p3571-3579.html
   My bibliography  Save this article

Fast indirect robust generalized method of moments

Author

Listed:
  • Loisel, Sébastien
  • Takane, Marina

Abstract

The Robust Generalized Methods of Moments (RGMM) and the Indirect Robust GMM (IRGMM) are algorithms for estimating parameter values in statistical models, such as diffusion models for interest rates, in a robust way. The long computation time is one of the main challenges facing these methods. In this paper, we introduce accelerated variants of RGMM and IRGMM. The fixed point iteration in RGMM is accelerated using minimal polynomial extrapolation, and the simulation of pseudo-observations in IRGMM is sped up by using a higher order stochastic Runge-Kutta method. We illustrate the fast performance of these algorithms for an interest rate diffusion model on four datasets.

Suggested Citation

  • Loisel, Sébastien & Takane, Marina, 2009. "Fast indirect robust generalized method of moments," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3571-3579, August.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:10:p:3571-3579
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00128-5
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Ronchetti, Elvezio & Trojani, Fabio, 2001. "Robust inference with GMM estimators," Journal of Econometrics, Elsevier, vol. 101(1), pages 37-69, March.
    3. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    4. Genton M.G. & Ronchetti E., 2003. "Robust Indirect Inference," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 67-76, January.
    5. Gourieroux, C & Monfort, A & Renault, E, 1993. "Indirect Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 85-118, Suppl. De.
    6. Veronika Czellar & G. Andrew Karolyi & Elvezio Ronchetti, 2007. "Indirect Robust Estimation of the Short-Term Interest Rate Process," Post-Print hal-02313232, HAL.
    7. Brennan, Michael J. & Schwartz, Eduardo S., 1977. "Savings bonds, retractable bonds and callable bonds," Journal of Financial Economics, Elsevier, vol. 5(1), pages 67-88, August.
    8. Dell'Aquila, Rosario & Ronchetti, Elvezio & Trojani, Fabio, 2003. "Robust GMM analysis of models for the short rate process," Journal of Empirical Finance, Elsevier, vol. 10(3), pages 373-397, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Somayeh Kokabisaghi & Eric J. Pauwels & Katrien Van Meulder & André B. Dorsman, 2018. "Are These Shocks for Real? Sensitivity Analysis of the Significance of the Wavelet Response to Some CKLS Processes," IJFS, MDPI, vol. 6(3), pages 1-12, September.
    2. Sébastien Loisel & Yoshio Takane, 2011. "Generalized GIPSCAL re-revisited: a fast convergent algorithm with acceleration by the minimal polynomial extrapolation," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(1), pages 57-75, April.
    3. Yoshio Takane & Kwanghee Jung & Heungsun Hwang, 2010. "An acceleration method for Ten Berge et al.’s algorithm for orthogonal INDSCAL," Computational Statistics, Springer, vol. 25(3), pages 409-428, September.
    4. Khan, Jafar A. & Van Aelst, Stefan & Zamar, Ruben H., 2010. "Fast robust estimation of prediction error based on resampling," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3121-3130, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cizek, P., 2009. "Generalized Methods of Trimmed Moments," Discussion Paper 2009-25, Tilburg University, Center for Economic Research.
    2. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    3. Zuzana Buckova & Beata Stehlikova & Daniel Sevcovic, 2016. "Numerical and analytical methods for bond pricing in short rate convergence models of interest rates," Papers 1607.04968, arXiv.org.
    4. Laurini, Márcio Poletti & Hotta, Luiz Koodi, 2013. "Indirect Inference in fractional short-term interest rate diffusions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 109-126.
    5. Calvet, Laurent E. & Czellar, Veronika, 2015. "Through the looking glass: Indirect inference via simple equilibria," Journal of Econometrics, Elsevier, vol. 185(2), pages 343-358.
    6. Otunuga Olusegun M. & Ladde Gangaram S. & Ladde Nathan G., 2019. "Local Lagged Adapted Generalized Method of Moments: An Innovative Estimation and Forecasting Approach and its Applications," Journal of Time Series Econometrics, De Gruyter, vol. 11(1), pages 1-72, January.
    7. Christiansen, Charlotte, 2008. "Level-ARCH short rate models with regime switching: Bivariate modeling of US and European short rates," International Review of Financial Analysis, Elsevier, vol. 17(5), pages 925-948, December.
    8. Gagliardini, Patrick & Trojani, Fabio & Urga, Giovanni, 2005. "Robust GMM tests for structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 139-182.
    9. Calvet, Laurent-Emmanuel & Czellar , Veronika, 2011. "state-observation sampling and the econometrics of learning models," HEC Research Papers Series 947, HEC Paris.
    10. La Vecchia, Davide & Trojani, Fabio, 2010. "Infinitesimal Robustness for Diffusions," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 703-712.
    11. Isaiah Andrews & Matthew Gentzkow & Jesse M. Shapiro, 2017. "Measuring the Sensitivity of Parameter Estimates to Estimation Moments," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 1553-1592.
    12. Emma M. Iglesias & Garry D. A. Phillips, 2020. "Further Results on Pseudo‐Maximum Likelihood Estimation and Testing in the Constant Elasticity of Variance Continuous Time Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 357-364, March.
    13. Vanden, Joel M., 2005. "Equilibrium analysis of volatility clustering," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 374-417, June.
    14. Anna Gottard & Giorgio Calzolari, 2014. "Alternative estimating procedures for multiple membership logit models with mixed effects: indirect inference and data cloning," Econometrics Working Papers Archive 2014_07, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    15. Hou, Ai Jun & Suardi, Sandy, 2011. "Modelling and forecasting short-term interest rate volatility: A semiparametric approach," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 692-710, September.
    16. Hong, Yongmiao & Lin, Hai & Wang, Shouyang, 2010. "Modeling the dynamics of Chinese spot interest rates," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 1047-1061, May.
    17. Ortelli, Claudio & Trojani, Fabio, 2005. "Robust efficient method of moments," Journal of Econometrics, Elsevier, vol. 128(1), pages 69-97, September.
    18. Al-Zoubi, Haitham A., 2019. "Bond and option prices with permanent shocks," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 272-290.
    19. Clements, Kenneth W. & Fry, Renée, 2008. "Commodity currencies and currency commodities," Resources Policy, Elsevier, vol. 33(2), pages 55-73, June.
    20. Martial Dupaigne & Patrick Feve & Julien Matheron, 2007. "Technology Shocks, Non-stationary Hours and DSVAR," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(2), pages 238-255, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:10:p:3571-3579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.