IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v52y2008i8p3928-3938.html
   My bibliography  Save this article

Generating random networks from a given distribution

Author

Listed:
  • Carter, Nathan
  • Hadlock, Charles
  • Haughton, Dominique

Abstract

Several variations are given for an algorithm that generates random networks approximately respecting the probabilities given by any likelihood function, such as from a p* social network model. A novel use of the genetic algorithm is incorporated in these methods, which improves its applicability to the degenerate distributions that can arise with p* models. Our approach includes a convenient way to find the high-probability items of an arbitrary network distribution function.

Suggested Citation

  • Carter, Nathan & Hadlock, Charles & Haughton, Dominique, 2008. "Generating random networks from a given distribution," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 3928-3938, April.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:8:p:3928-3938
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00024-8
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stanley Wasserman & Philippa Pattison, 1996. "Logit models and logistic regressions for social networks: I. An introduction to Markov graphs andp," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 401-425, September.
    2. Hunter, David R. & Goodreau, Steven M. & Handcock, Mark S., 2008. "Goodness of Fit of Social Network Models," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 248-258, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Nicola, Giacomo & Fritz, Cornelius & Mehrl, Marius & Kauermann, Göran, 2023. "Dependence matters: Statistical models to identify the drivers of tie formation in economic networks," Journal of Economic Behavior & Organization, Elsevier, vol. 215(C), pages 351-363.
    2. Lian, Xiangpeng & Guo, Ying & Su, Jun, 2021. "Technology stocks: A study on the characteristics that help transfer public research to industry," Research Policy, Elsevier, vol. 50(10).
    3. Lee, Jihui & Li, Gen & Wilson, James D., 2020. "Varying-coefficient models for dynamic networks," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    4. Teague R. Henry & Kathleen M. Gates & Mitchell J. Prinstein & Douglas Steinley, 2020. "Modeling Heterogeneous Peer Assortment Effects Using Finite Mixture Exponential Random Graph Models," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 8-34, March.
    5. Jenke, Michael & Pretzsch, Jürgen, 2021. "Network administrators facilitate information sharing among communal forest organizations in Thailand," Forest Policy and Economics, Elsevier, vol. 126(C).
    6. Chih-Sheng Hsieh & Michael D. Konig & Xiaodong Liu, 2022. "A Structural Model for the Coevolution of Networks and Behavior," The Review of Economics and Statistics, MIT Press, vol. 104(2), pages 355-367, May.
    7. Anna Malinovskaya & Philipp Otto, 2021. "Online network monitoring," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(5), pages 1337-1364, December.
    8. Per Block & Christoph Stadtfeld & Tom A. B. Snijders, 2019. "Forms of Dependence: Comparing SAOMs and ERGMs From Basic Principles," Sociological Methods & Research, , vol. 48(1), pages 202-239, February.
    9. Federica Bianchi & Francesco Bartolucci & Stefano Peluso & Antonietta Mira, 2020. "Longitudinal networks of dyadic relationships using latent trajectories: evidence from the European interbank market," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 711-739, August.
    10. Tom Broekel & Pierre-Alexandre Balland & Martijn Burger & Frank Oort, 2014. "Modeling knowledge networks in economic geography: a discussion of four methods," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(2), pages 423-452, September.
    11. Sebastian Spaeth & Sven Niederhöfer, 2022. "Compatibility promotion between platforms: The role of open technology standards and giant platforms," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 1891-1915, December.
    12. Kei, Yik Lun & Chen, Yanzhen & Madrid Padilla, Oscar Hernan, 2023. "A partially separable model for dynamic valued networks," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    13. Joshua Daniel Loyal & Yuguo Chen, 2020. "Statistical Network Analysis: A Review with Applications to the Coronavirus Disease 2019 Pandemic," International Statistical Review, International Statistical Institute, vol. 88(2), pages 419-440, August.
    14. Vishesh Karwa & Pavel N. Krivitsky & Aleksandra B. Slavković, 2017. "Sharing social network data: differentially private estimation of exponential family random-graph models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 481-500, April.
    15. He, Xi-jun & Dong, Yan-bo & Wu, Yu-ying & Jiang, Guo-rui & Zheng, Yao, 2019. "Factors affecting evolution of the interprovincial technology patent trade networks in China based on exponential random graph models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 443-457.
    16. Francesca Pallotti & Alessandro Lomi & Daniele Mascia, 2013. "From network ties to network structures: Exponential Random Graph Models of interorganizational relations," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(3), pages 1665-1685, April.
    17. Ashish Arora & Michelle Gittelman & Sarah Kaplan & John Lynch & Will Mitchell & Nicolaj Siggelkow & Ji Youn (Rose) Kim & Michael Howard & Emily Cox Pahnke & Warren Boeker, 2016. "Understanding network formation in strategy research: Exponential random graph models," Strategic Management Journal, Wiley Blackwell, vol. 37(1), pages 22-44, January.
    18. Manuel E. Sosa & Martin Gargiulo & Craig Rowles, 2015. "Can Informal Communication Networks Disrupt Coordination in New Product Development Projects?," Organization Science, INFORMS, vol. 26(4), pages 1059-1078, August.
    19. Guo, Yaoqi & Zheng, Ru & Zhang, Hongwei, 2023. "Tantalum trade structural dependencies are what we need: A perspective on the industrial chain," Resources Policy, Elsevier, vol. 82(C).
    20. Alessandro Lomi & Dean Lusher & Philippa E. Pattison & Garry Robins, 2014. "The Focused Organization of Advice Relations: A Study in Boundary Crossing," Organization Science, INFORMS, vol. 25(2), pages 438-457, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:8:p:3928-3938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.