IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v51y2007i12p5913-5917.html
   My bibliography  Save this article

Convergence of random k-nearest-neighbour imputation

Author

Listed:
  • Dahl, Fredrik A.

Abstract

No abstract is available for this item.

Suggested Citation

  • Dahl, Fredrik A., 2007. "Convergence of random k-nearest-neighbour imputation," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5913-5917, August.
  • Handle: RePEc:eee:csdana:v:51:y:2007:i:12:p:5913-5917
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(06)00427-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 300-301, July.
    2. Little, Roderick J A, 1988. "Missing-Data Adjustments in Large Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(3), pages 287-296, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerko Vink & Stef van Buuren, 2013. "Multiple Imputation of Squared Terms," Sociological Methods & Research, , vol. 42(4), pages 598-607, November.
    2. Valaei, Naser & Rezaei, Sajad & Ismail, Wan Khairuzzaman Wan, 2017. "Examining learning strategies, creativity, and innovation at SMEs using fuzzy set Qualitative Comparative Analysis and PLS path modeling," Journal of Business Research, Elsevier, vol. 70(C), pages 224-233.
    3. Joost Ginkel & Pieter Kroonenberg, 2014. "Using Generalized Procrustes Analysis for Multiple Imputation in Principal Component Analysis," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 242-269, July.
    4. Renate S M Buisman & Katharina Pittner & Marieke S Tollenaar & Jolanda Lindenberg & Lisa J M van den Berg & Laura H C G Compier-de Block & Joost R van Ginkel & Lenneke R A Alink & Marian J Bakermans-K, 2020. "Intergenerational transmission of child maltreatment using a multi-informant multi-generation family design," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-23, March.
    5. Chenyang Gu & Roee Gutman, 2017. "Combining item response theory with multiple imputation to equate health assessment questionnaires," Biometrics, The International Biometric Society, vol. 73(3), pages 990-998, September.
    6. Verbeek, M.J.C.M. & Nijman, T.E., 1992. "Incomplete panels and selection bias : A survey," Discussion Paper 1992-7, Tilburg University, Center for Economic Research.
    7. Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
    8. Marco Di Zio & Ugo Guarnera & Roberta Varriale, 2016. "Estimation of the main variables of the economic account of small and medium enterprises based on administrative sources," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 18(1), pages 71-81.
    9. Giuseppe Arbia & Giuseppe Espa & Diego Giuliani, 2016. "Dirty spatial econometrics," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 56(1), pages 177-189, January.
    10. Eisele, Martin & Zhu, Junyi, 2013. "Multiple imputation in a complex household survey - the German Panel on Household Finances (PHF): challenges and solutions," EconStor Preprints 100007, ZBW - Leibniz Information Centre for Economics.
    11. Brad R. Humphreys & Yang Seung Lee & Brian P. Soebbing, 2010. "Consumer behaviour in lottery: the double hurdle approach and zeros in gambling survey data," International Gambling Studies, Taylor & Francis Journals, vol. 10(2), pages 165-176, August.
    12. Xiong, Ruoxuan & Pelger, Markus, 2023. "Large dimensional latent factor modeling with missing observations and applications to causal inference," Journal of Econometrics, Elsevier, vol. 233(1), pages 271-301.
    13. Stockdale, Susan E. & Wells, Kenneth B. & Tang, Lingqi & Belin, Thomas R. & Zhang, Lily & Sherbourne, Cathy D., 2007. "The importance of social context: Neighborhood stressors, stress-buffering mechanisms, and alcohol, drug, and mental health disorders," Social Science & Medicine, Elsevier, vol. 65(9), pages 1867-1881, November.
    14. Bilal, Muhammad & Zhang, Yunfeng & Cai, Shukai & Akram, Umair & Halibas, Alrence, 2024. "Artificial intelligence is the magic wand making customer-centric a reality! An investigation into the relationship between consumer purchase intention and consumer engagement through affective attach," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
    15. Robert J. Batt & Christian Terwiesch, 2015. "Waiting Patiently: An Empirical Study of Queue Abandonment in an Emergency Department," Management Science, INFORMS, vol. 61(1), pages 39-59, January.
    16. Dang, Hai-Anh H & Carletto, Calogero, 2022. "Recall Bias Revisited: Measure Farm Labor Using Mixed-Mode Surveys and Multiple Imputation," IZA Discussion Papers 14997, Institute of Labor Economics (IZA).
    17. Chia-Ning Wang & Roderick Little & Bin Nan & Siobán D. Harlow, 2011. "A Hot-Deck Multiple Imputation Procedure for Gaps in Longitudinal Recurrent Event Histories," Biometrics, The International Biometric Society, vol. 67(4), pages 1573-1582, December.
    18. Daniel Schunk, 2007. "A Markov Chain Monte Carlo Multiple Imputation Procedure for Dealing with Item Nonresponse in the German SAVE Survey," MEA discussion paper series 07121, Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy.
    19. Brownstone, David, 1997. "Multiple Imputation Methodology for Missing Data, Non-Random Response, and Panel Attrition," University of California Transportation Center, Working Papers qt2zd6w6hh, University of California Transportation Center.
    20. Zachary H. Seeskin, 2016. "Evaluating the Use of Commercial Data to Improve Survey Estimates of Property Taxes," CARRA Working Papers 2016-06, Center for Economic Studies, U.S. Census Bureau.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2007:i:12:p:5913-5917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.