IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v50y2006i6p1407-1417.html
   My bibliography  Save this article

Effect of using principal coordinates and principal components on retrieval of clusters

Author

Listed:
  • Chae, Seong S.
  • Warde, William D.

Abstract

No abstract is available for this item.

Suggested Citation

  • Chae, Seong S. & Warde, William D., 2006. "Effect of using principal coordinates and principal components on retrieval of clusters," Computational Statistics & Data Analysis, Elsevier, vol. 50(6), pages 1407-1417, March.
  • Handle: RePEc:eee:csdana:v:50:y:2006:i:6:p:1407-1417
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(05)00028-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Glenn Milligan & Martha Cooper, 1988. "A study of standardization of variables in cluster analysis," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 181-204, September.
    2. M. J. Baxter, 1995. "Standardization and Transformation in Principal Component Analysis, with Applications to Archaeometry," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(4), pages 513-527, December.
    3. G. M. Arnold & A. J. Collins, 1993. "Interpretation of Transformed Axes in Multivariate Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 42(2), pages 381-400, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chih-Chiang Wei, 2017. "Nearshore Wave Predictions Using Data Mining Techniques during Typhoons: A Case Study near Taiwan’s Northeastern Coast," Energies, MDPI, vol. 11(1), pages 1-23, December.
    2. Bécue-Bertaut, Monica & Pagès, Jérome, 2008. "Multiple factor analysis and clustering of a mixture of quantitative, categorical and frequency data," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3255-3268, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe RICCIARDO LAMONICA, 2002. "La funzionalita' nelle zone omogenee delle Marche," Working Papers 165, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    2. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    3. Dawid Majcherek & Marzenna Anna Weresa & Christina Ciecierski, 2020. "Understanding Regional Risk Factors for Cancer: A Cluster Analysis of Lifestyle, Environment and Socio-Economic Status in Poland," Sustainability, MDPI, vol. 12(21), pages 1-15, October.
    4. Karolina Pawlak & Luboš Smutka & Pavel Kotyza, 2021. "Agricultural Potential of the EU Countries: How Far Are They from the USA?," Agriculture, MDPI, vol. 11(4), pages 1-21, March.
    5. Aurora Torrente & Juan Romo, 2021. "Initializing k-means Clustering by Bootstrap and Data Depth," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 232-256, July.
    6. Thomas Bittmann & Jens‐Peter Loy & Sven Anders, 2020. "Product differentiation and cost pass‐through: industry‐wide versus firm‐specific cost shocks," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(4), pages 1184-1209, October.
    7. Anca Gabriela Ilie & Marinela Luminita Emanuela Zlatea & Cristina Negreanu & Dan Dumitriu & Alma Pentescu, 2023. "Reliance on Russian Federation Energy Imports and Renewable Energy in the European Union," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(64), pages 780-780, August.
    8. Smith, Lindsey P. & Ng, Shu Wen & Popkin, Barry M., 2014. "No time for the gym? Housework and other non-labor market time use patterns are associated with meeting physical activity recommendations among adults in full-time, sedentary jobs," Social Science & Medicine, Elsevier, vol. 120(C), pages 126-134.
    9. Chong, Alain Yee-Loong & Ooi, Keng-Boon & Sohal, Amrik, 2009. "The relationship between supply chain factors and adoption of e-Collaboration tools: An empirical examination," International Journal of Production Economics, Elsevier, vol. 122(1), pages 150-160, November.
    10. Raquel Lourenço Carvalhal Monteiro & Valdecy Pereira & Helder Gomes Costa, 2019. "Analysis of the Better Life Index Trough a Cluster Algorithm," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 142(2), pages 477-506, April.
    11. Henner Gimpel & Daniel Rau & Maximilian Röglinger, 2018. "Understanding FinTech start-ups – a taxonomy of consumer-oriented service offerings," Electronic Markets, Springer;IIM University of St. Gallen, vol. 28(3), pages 245-264, August.
    12. Vincent Claude B & Eastman Byron, 2009. "Defining the Style of Play in the NHL: An Application of Cluster Analysis," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(1), pages 1-23, January.
    13. Marek Walesiak, 2018. "The Choice Of Normalization Method And Rankings Of The Set Of Objects Based On Composite Indicator Values," Statistics in Transition New Series, Polish Statistical Association, vol. 19(4), pages 693-710, December.
    14. Dauda Usman & Ismail Mohamad, 2013. "A Novel Center Point Initialization Technique for K-means Clustering Algorithm," Modern Applied Science, Canadian Center of Science and Education, vol. 7(9), pages 1-10, September.
    15. Mitra, Suman & Yao, Mingqi & Ritchie, Stephen G., 2021. "Gender differences in elderly mobility in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 203-226.
    16. Roman Seidl & Corinne Moser & Michael Stauffacher & Pius Krütli, 2013. "Perceived Risk and Benefit of Nuclear Waste Repositories: Four Opinion Clusters," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 1038-1048, June.
    17. Masayoshi Oka, 2022. "Census-Tract-Level Median Household Income and Median Family Income Estimates: A Unidimensional Measure of Neighborhood Socioeconomic Status?," IJERPH, MDPI, vol. 20(1), pages 1-23, December.
    18. Michael C. Thrun & Alfred Ultsch, 2021. "Using Projection-Based Clustering to Find Distance- and Density-Based Clusters in High-Dimensional Data," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 280-312, July.
    19. Douglas Steinley & Lawrence Hubert, 2008. "Order-Constrained Solutions in K-Means Clustering: Even Better Than Being Globally Optimal," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 647-664, December.
    20. Chrys Caroni & Nedret Billor, 2007. "Robust Detection of Multiple Outliers in Grouped Multivariate Data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(10), pages 1241-1250.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:50:y:2006:i:6:p:1407-1417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.