IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v47y2004i2p255-275.html
   My bibliography  Save this article

A genetic estimation algorithm for parameters of stochastic ordinary differential equations

Author

Listed:
  • Alcock, Jamie
  • Burrage, Kevin

Abstract

No abstract is available for this item.

Suggested Citation

  • Alcock, Jamie & Burrage, Kevin, 2004. "A genetic estimation algorithm for parameters of stochastic ordinary differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 255-275, September.
  • Handle: RePEc:eee:csdana:v:47:y:2004:i:2:p:255-275
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(03)00274-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gilli, M. & Winker, P., 2003. "A global optimization heuristic for estimating agent based models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 299-312, March.
    2. Lo, Andrew W., 1988. "Maximum Likelihood Estimation of Generalized Itô Processes with Discretely Sampled Data," Econometric Theory, Cambridge University Press, vol. 4(2), pages 231-247, August.
    3. Eraker, Bjorn, 2001. "MCMC Analysis of Diffusion Models with Application to Finance," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 177-191, April.
    4. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 297-316, July.
    5. Durham, Garland B & Gallant, A Ronald, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 335-338, July.
    6. Stan Hurn, A. & Lindsay, K.A., 1997. "Estimating the parameters of stochastic differential equations by Monte Carlo methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 43(3), pages 495-501.
    7. Ait-Sahalia, Yacine, 2002. "Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes: Comment," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 317-321, July.
    8. Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, vol. 70(1), pages 223-262, January.
    9. Philip Gray, 2002. "Bayesian estimation of financial models," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 42(2), pages 111-130, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Winker, Peter & Gilli, Manfred, 2004. "Applications of optimization heuristics to estimation and modelling problems," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 211-223, September.
    2. Gimeno, Ricardo & Nave, Juan M., 2009. "A genetic algorithm estimation of the term structure of interest rates," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2236-2250, April.
    3. Kapetanios, George & Marcellino, Massimiliano & Papailias, Fotis, 2016. "Forecasting inflation and GDP growth using heuristic optimisation of information criteria and variable reduction methods," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 369-382.
    4. Manfred Gilli & Peter Winker, 2008. "Review of Heuristic Optimization Methods in Econometrics," Working Papers 001, COMISEF.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    2. A. S. Hurn & J. I. Jeisman & K. A. Lindsay, 0. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations," Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 390-455.
    3. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Teaching an old dog new tricks: Improved estimation of the parameters of SDEs by numerical solution of the Fokker-Planck equation," Stan Hurn Discussion Papers 2006-01, School of Economics and Finance, Queensland University of Technology.
    4. Bandi, Federico M. & Phillips, Peter C.B., 2007. "A simple approach to the parametric estimation of potentially nonstationary diffusions," Journal of Econometrics, Elsevier, vol. 137(2), pages 354-395, April.
    5. Detemple, Jerome & Garcia, Rene & Rindisbacher, Marcel, 2006. "Asymptotic properties of Monte Carlo estimators of diffusion processes," Journal of Econometrics, Elsevier, vol. 134(1), pages 1-68, September.
    6. Kristensen, Dennis & Shin, Yongseok, 2012. "Estimation of dynamic models with nonparametric simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 167(1), pages 76-94.
    7. Siddhartha Chib & Michael K Pitt & Neil Shephard, 2004. "Likelihood based inference for diffusion driven models," OFRC Working Papers Series 2004fe17, Oxford Financial Research Centre.
    8. Wang, Xiaohu & Phillips, Peter C.B. & Yu, Jun, 2011. "Bias in estimating multivariate and univariate diffusions," Journal of Econometrics, Elsevier, vol. 161(2), pages 228-245, April.
    9. Czellar, Veronika & Karolyi, G. Andrew & Ronchetti, Elvezio, 2007. "Indirect robust estimation of the short-term interest rate process," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 546-563, September.
    10. Davide Raggi & Silvano Bordignon, 2011. "Volatility, Jumps, and Predictability of Returns: A Sequential Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 30(6), pages 669-695.
    11. Pascal St-Amour, 2004. "Ratchet vs Blasé Investors and Asset Markets," CIRANO Working Papers 2004s-11, CIRANO.
    12. Xiao Huang, 2011. "Quasi‐maximum likelihood estimation of discretely observed diffusions," Econometrics Journal, Royal Economic Society, vol. 14(2), pages 241-256, July.
    13. Lubrano, Michel, 2004. "Modélisation bayésienne non linéaire du taux d’intérêt de court terme américain : l’aide des outils non paramétriques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(2), pages 465-499, Juin-Sept.
    14. Peter C. B. Phillips & Jun Yu, 2009. "Simulation-Based Estimation of Contingent-Claims Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3669-3705, September.
    15. Pastorello, S. & Rossi, E., 2010. "Efficient importance sampling maximum likelihood estimation of stochastic differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2753-2762, November.
    16. Konstantinos Kalogeropoulos & Gareth O. Roberts & Petros Dellaportas, 2007. "Inference for stochastic volatility models using time change transformations," Papers 0711.1594, arXiv.org.
    17. Griffin, J.E. & Steel, M.F.J., 2006. "Inference with non-Gaussian Ornstein-Uhlenbeck processes for stochastic volatility," Journal of Econometrics, Elsevier, vol. 134(2), pages 605-644, October.
    18. Michael Sørensen, 2008. "Parametric inference for discretely sampled stochastic differential equations," CREATES Research Papers 2008-18, Department of Economics and Business Economics, Aarhus University.
    19. A. Hurn & J. Jeisman & K. Lindsay, 2007. "Teaching an Old Dog New Tricks: Improved Estimation of the Parameters of Stochastic Differential Equations by Numerical Solution of the Fokker-Planck Equation," NCER Working Paper Series 9, National Centre for Econometric Research.
    20. Pascal St-Amour, 2005. "Direct Preference for Wealth in Aggregate Household Portfolio," Cahiers de Recherches Economiques du Département d'économie 05.04, Université de Lausanne, Faculté des HEC, Département d’économie.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:47:y:2004:i:2:p:255-275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.