IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v46y2004i4p747-776.html
   My bibliography  Save this article

An approximate likelihood approach to nonlinear mixed effects models via spline approximation

Author

Listed:
  • Ge, Zhiyu
  • J. Bickel, Peter
  • A. Rice, John

Abstract

No abstract is available for this item.

Suggested Citation

  • Ge, Zhiyu & J. Bickel, Peter & A. Rice, John, 2004. "An approximate likelihood approach to nonlinear mixed effects models via spline approximation," Computational Statistics & Data Analysis, Elsevier, vol. 46(4), pages 747-776, July.
  • Handle: RePEc:eee:csdana:v:46:y:2004:i:4:p:747-776
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(03)00233-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramos, Rogelio Q. & Pantula, Sastry G., 1995. "Estimation of nonlinear random coefficient models," Statistics & Probability Letters, Elsevier, vol. 24(1), pages 49-56, July.
    2. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    3. Kellerer H., 1966. "Ein Beitrag zur Wissenschaftsstatistik," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 179(1), pages 445-451, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Čížek, Pavel, 2008. "General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1500-1529, December.
    2. Mittelhammer, Ron C. & Judge, George, 2011. "A family of empirical likelihood functions and estimators for the binary response model," Journal of Econometrics, Elsevier, vol. 164(2), pages 207-217, October.
    3. Rodrigo Montero & Diego Vásquez, 2015. "Job Satisfaction and Reference Wages: Evidence for a Developing Country," Journal of Happiness Studies, Springer, vol. 16(6), pages 1493-1507, December.
    4. van den Berg, Gerard J. & van der Klaauw, Bas, 2001. "Combining micro and macro unemployment duration data," Journal of Econometrics, Elsevier, vol. 102(2), pages 271-309, June.
    5. Giovanni Compiani & Philip Haile & Marcelo Sant’Anna, 2020. "Common Values, Unobserved Heterogeneity, and Endogenous Entry in US Offshore Oil Lease Auctions," Journal of Political Economy, University of Chicago Press, vol. 128(10), pages 3872-3912.
    6. Ye, Xin & Garikapati, Venu M. & You, Daehyun & Pendyala, Ram M., 2017. "A practical method to test the validity of the standard Gumbel distribution in logit-based multinomial choice models of travel behavior," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 173-192.
    7. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    8. Bryan T. Kelly & Asaf Manela & Alan Moreira, 2019. "Text Selection," NBER Working Papers 26517, National Bureau of Economic Research, Inc.
    9. McGovern, Mark E. & Canning, David & Bärnighausen, Till, 2018. "Accounting for non-response bias using participation incentives and survey design: An application using gift vouchers," Economics Letters, Elsevier, vol. 171(C), pages 239-244.
    10. Malmendier, Ulrike M. & Botsch, Matthew J., 2020. "The Long Shadows of the Great Inflation: Evidence from Residential Mortgages," CEPR Discussion Papers 14934, C.E.P.R. Discussion Papers.
    11. Laurent Davezies & Xavier D'Haultfoeuille & Yannick Guyonvarch, 2018. "Asymptotic results under multiway clustering," Papers 1807.07925, arXiv.org, revised Aug 2018.
    12. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    13. Hung‐Hao Chang & Ashok K. Mishra & Tzong‐Haw Lee, 2019. "A supply‐side analysis of agritourism: Evidence from farm‐level agriculture census data in Taiwan," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(3), pages 521-548, July.
    14. Coppejans, Mark, 2001. "Estimation of the binary response model using a mixture of distributions estimator (MOD)," Journal of Econometrics, Elsevier, vol. 102(2), pages 231-269, June.
    15. Joachim Freyberger & Matthew Masten, 2016. "Compactness of infinite dimensional parameter spaces," CeMMAP working papers CWP01/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Working Papers 23-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2023.
    17. Dai, Yongwu & Chang, Hung-Hao & Liu, Weiping, 2015. "Do forest producers benefit from the forest disaster insurance program? Empirical evidence in Fujian Province of China," Forest Policy and Economics, Elsevier, vol. 50(C), pages 127-133.
    18. Sanders, Lisanne & Melenberg, Bertrand, 2016. "Estimating the joint survival probabilities of married individuals," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 88-106.
    19. Jie Q. Guo & Pravin K. Trivedi, 2002. "Flexible Parametric Models for Long‐tailed Patent Count Distributions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(1), pages 63-82, February.
    20. Mark B. Stewart, 2009. "The Estimation Of Pensioner Equivalence Scales Using Subjective Data," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 55(4), pages 907-929, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:46:y:2004:i:4:p:747-776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.