IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v34y2000i2p243-257.html
   My bibliography  Save this article

Comparison of the performance of neural network methods and Cox regression for censored survival data

Author

Listed:
  • Xiang, Anny
  • Lapuerta, Pablo
  • Ryutov, Alex
  • Buckley, Jonathan
  • Azen, Stanley

Abstract

No abstract is available for this item.

Suggested Citation

  • Xiang, Anny & Lapuerta, Pablo & Ryutov, Alex & Buckley, Jonathan & Azen, Stanley, 2000. "Comparison of the performance of neural network methods and Cox regression for censored survival data," Computational Statistics & Data Analysis, Elsevier, vol. 34(2), pages 243-257, August.
  • Handle: RePEc:eee:csdana:v:34:y:2000:i:2:p:243-257
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(99)00098-5
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaudart, Jean & Giusiano, Bernard & Huiart, Laetitia, 2004. "Comparison of the performance of multi-layer perceptron and linear regression for epidemiological data," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 547-570, January.
    2. Izquierdo, J. & Crespo Márquez, A. & Uribetxebarria, J., 2019. "Dynamic artificial neural network-based reliability considering operational context of assets," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 483-493.
    3. Li, Xingyu & Krivtsov, Vasiliy & Arora, Karunesh, 2022. "Attention-based deep survival model for time series data," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Kathrin Plankensteiner & Olivia Bluder & Jürgen Pilz, 2015. "Bayesian Network Model with Application to Smart Power Semiconductor Lifetime Data," Risk Analysis, John Wiley & Sons, vol. 35(9), pages 1623-1639, September.
    5. Lin Hao & Juncheol Kim & Sookhee Kwon & Il Do Ha, 2021. "Deep Learning-Based Survival Analysis for High-Dimensional Survival Data," Mathematics, MDPI, vol. 9(11), pages 1-18, May.
    6. Olivencia Polo, Fernando A. & Ferrero Bermejo, Jesús & Gómez Fernández, Juan F. & Crespo Márquez, Adolfo, 2015. "Failure mode prediction and energy forecasting of PV plants to assist dynamic maintenance tasks by ANN based models," Renewable Energy, Elsevier, vol. 81(C), pages 227-238.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:34:y:2000:i:2:p:243-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.