IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v199y2024ics0167947324000951.html
   My bibliography  Save this article

An embedded diachronic sense change model with a case study from ancient Greek

Author

Listed:
  • Zafar, Schyan
  • Nicholls, Geoff K.

Abstract

Word meanings change over time, and word senses evolve, emerge or die out in the process. For ancient languages, where the corpora are often small and sparse, modelling such changes accurately proves challenging, and quantifying uncertainty in sense-change estimates consequently becomes important. GASC (Genre-Aware Semantic Change) and DiSC (Diachronic Sense Change) are existing generative models that have been used to analyse sense change for target words from an ancient Greek text corpus, using unsupervised learning without the help of any pre-training. These models represent the senses of a given target word such as “kosmos” (meaning decoration, order or world) as distributions over context words, and sense prevalence as a distribution over senses. The models are fitted using Markov Chain Monte Carlo (MCMC) methods to measure temporal changes in these representations. This paper introduces EDiSC, an Embedded DiSC model, which combines word embeddings with DiSC to provide superior model performance. It is shown empirically that EDiSC offers improved predictive accuracy, ground-truth recovery and uncertainty quantification, as well as better sampling efficiency and scalability properties with MCMC methods. The challenges of fitting these models are also discussed.

Suggested Citation

  • Zafar, Schyan & Nicholls, Geoff K., 2024. "An embedded diachronic sense change model with a case study from ancient Greek," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:csdana:v:199:y:2024:i:c:s0167947324000951
    DOI: 10.1016/j.csda.2024.108011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324000951
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schyan Zafar & Geoff K. Nicholls, 2022. "Measuring diachronic sense change: New models and Monte Carlo methods for Bayesian inference," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1569-1604, November.
    2. Gareth O. Roberts & Jeffrey S. Rosenthal, 1998. "Optimal scaling of discrete approximations to Langevin diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 255-268.
    3. Bruce Hajek, 1988. "Cooling Schedules for Optimal Annealing," Mathematics of Operations Research, INFORMS, vol. 13(2), pages 311-329, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. P. Stephens & W. Baritompa, 1998. "Global Optimization Requires Global Information," Journal of Optimization Theory and Applications, Springer, vol. 96(3), pages 575-588, March.
    2. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.
    3. Stoica, R.S. & Gregori, P. & Mateu, J., 2005. "Simulated annealing and object point processes: Tools for analysis of spatial patterns," Stochastic Processes and their Applications, Elsevier, vol. 115(11), pages 1860-1882, November.
    4. George Kapetanios, 2005. "Variable Selection using Non-Standard Optimisation of Information Criteria," Working Papers 533, Queen Mary University of London, School of Economics and Finance.
    5. Souvik Das & Ashwin Aravind & Ashish Cherukuri & Debasish Chatterjee, 2022. "Near-optimal solutions of convex semi-infinite programs via targeted sampling," Annals of Operations Research, Springer, vol. 318(1), pages 129-146, November.
    6. Mamatzakis, Emmanuel C. & Tsionas, Mike G., 2021. "Making inference of British household's happiness efficiency: A Bayesian latent model," European Journal of Operational Research, Elsevier, vol. 294(1), pages 312-326.
    7. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    8. Pirlot, Marc, 1996. "General local search methods," European Journal of Operational Research, Elsevier, vol. 92(3), pages 493-511, August.
    9. Delis, Manthos D. & Tsionas, Mike G., 2018. "Measuring management practices," International Journal of Production Economics, Elsevier, vol. 199(C), pages 65-77.
    10. Dalalyan, Arnak S. & Karagulyan, Avetik, 2019. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
    11. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    12. Arnak S. Dalalyan, 2017. "Theoretical guarantees for approximate sampling from smooth and log-concave densities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 651-676, June.
    13. O. F. Christensen & J. Møller & R. P. Waagepetersen, 2001. "Geometric Ergodicity of Metropolis-Hastings Algorithms for Conditional Simulation in Generalized Linear Mixed Models," Methodology and Computing in Applied Probability, Springer, vol. 3(3), pages 309-327, September.
    14. Steinhofel, K. & Albrecht, A. & Wong, C. K., 1999. "Two simulated annealing-based heuristics for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 118(3), pages 524-548, November.
    15. Löwe, Matthias, 1997. "On the invariant measure of non-reversible simulated annealing," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 189-193, December.
    16. Miclo, Laurent, 1995. "Remarques sur l'ergodicité des algorithmes de recuit simulé sur un graphe," Stochastic Processes and their Applications, Elsevier, vol. 58(2), pages 329-360, August.
    17. Kapetanios, George, 2006. "Cluster analysis of panel data sets using non-standard optimisation of information criteria," Journal of Economic Dynamics and Control, Elsevier, vol. 30(8), pages 1389-1408, August.
    18. Antonio Jiménez-Martín & Alfonso Mateos & Josefa Z. Hernández, 2021. "Aluminium Parts Casting Scheduling Based on Simulated Annealing," Mathematics, MDPI, vol. 9(7), pages 1-18, March.
    19. M Ludkin & C Sherlock, 2023. "Hug and hop: a discrete-time, nonreversible Markov chain Monte Carlo algorithm," Biometrika, Biometrika Trust, vol. 110(2), pages 301-318.
    20. Van Buer, Michael G. & Woodruff, David L. & Olson, Rick T., 1999. "Solving the medium newspaper production/distribution problem," European Journal of Operational Research, Elsevier, vol. 115(2), pages 237-253, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:199:y:2024:i:c:s0167947324000951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.