IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v199y2024ics0167947324000951.html
   My bibliography  Save this article

An embedded diachronic sense change model with a case study from ancient Greek

Author

Listed:
  • Zafar, Schyan
  • Nicholls, Geoff K.

Abstract

Word meanings change over time, and word senses evolve, emerge or die out in the process. For ancient languages, where the corpora are often small and sparse, modelling such changes accurately proves challenging, and quantifying uncertainty in sense-change estimates consequently becomes important. GASC (Genre-Aware Semantic Change) and DiSC (Diachronic Sense Change) are existing generative models that have been used to analyse sense change for target words from an ancient Greek text corpus, using unsupervised learning without the help of any pre-training. These models represent the senses of a given target word such as “kosmos” (meaning decoration, order or world) as distributions over context words, and sense prevalence as a distribution over senses. The models are fitted using Markov Chain Monte Carlo (MCMC) methods to measure temporal changes in these representations. This paper introduces EDiSC, an Embedded DiSC model, which combines word embeddings with DiSC to provide superior model performance. It is shown empirically that EDiSC offers improved predictive accuracy, ground-truth recovery and uncertainty quantification, as well as better sampling efficiency and scalability properties with MCMC methods. The challenges of fitting these models are also discussed.

Suggested Citation

  • Zafar, Schyan & Nicholls, Geoff K., 2024. "An embedded diachronic sense change model with a case study from ancient Greek," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:csdana:v:199:y:2024:i:c:s0167947324000951
    DOI: 10.1016/j.csda.2024.108011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324000951
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:199:y:2024:i:c:s0167947324000951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.