IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v199y2024ics0167947324000951.html
   My bibliography  Save this article

An embedded diachronic sense change model with a case study from ancient Greek

Author

Listed:
  • Zafar, Schyan
  • Nicholls, Geoff K.

Abstract

Word meanings change over time, and word senses evolve, emerge or die out in the process. For ancient languages, where the corpora are often small and sparse, modelling such changes accurately proves challenging, and quantifying uncertainty in sense-change estimates consequently becomes important. GASC (Genre-Aware Semantic Change) and DiSC (Diachronic Sense Change) are existing generative models that have been used to analyse sense change for target words from an ancient Greek text corpus, using unsupervised learning without the help of any pre-training. These models represent the senses of a given target word such as “kosmos” (meaning decoration, order or world) as distributions over context words, and sense prevalence as a distribution over senses. The models are fitted using Markov Chain Monte Carlo (MCMC) methods to measure temporal changes in these representations. This paper introduces EDiSC, an Embedded DiSC model, which combines word embeddings with DiSC to provide superior model performance. It is shown empirically that EDiSC offers improved predictive accuracy, ground-truth recovery and uncertainty quantification, as well as better sampling efficiency and scalability properties with MCMC methods. The challenges of fitting these models are also discussed.

Suggested Citation

  • Zafar, Schyan & Nicholls, Geoff K., 2024. "An embedded diachronic sense change model with a case study from ancient Greek," Computational Statistics & Data Analysis, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:csdana:v:199:y:2024:i:c:s0167947324000951
    DOI: 10.1016/j.csda.2024.108011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324000951
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruce Hajek, 1988. "Cooling Schedules for Optimal Annealing," Mathematics of Operations Research, INFORMS, vol. 13(2), pages 311-329, May.
    2. Schyan Zafar & Geoff K. Nicholls, 2022. "Measuring diachronic sense change: New models and Monte Carlo methods for Bayesian inference," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1569-1604, November.
    3. Gareth O. Roberts & Jeffrey S. Rosenthal, 1998. "Optimal scaling of discrete approximations to Langevin diffusions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(1), pages 255-268.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stoica, R.S. & Gregori, P. & Mateu, J., 2005. "Simulated annealing and object point processes: Tools for analysis of spatial patterns," Stochastic Processes and their Applications, Elsevier, vol. 115(11), pages 1860-1882, November.
    2. Pirlot, Marc, 1996. "General local search methods," European Journal of Operational Research, Elsevier, vol. 92(3), pages 493-511, August.
    3. Delis, Manthos D. & Tsionas, Mike G., 2018. "Measuring management practices," International Journal of Production Economics, Elsevier, vol. 199(C), pages 65-77.
    4. Dalalyan, Arnak S. & Karagulyan, Avetik, 2019. "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5278-5311.
    5. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2020. "On an integer-valued stochastic intensity model for time series of counts," MPRA Paper 105406, University Library of Munich, Germany.
    6. Arnak S. Dalalyan, 2017. "Theoretical guarantees for approximate sampling from smooth and log-concave densities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 651-676, June.
    7. Löwe, Matthias, 1997. "On the invariant measure of non-reversible simulated annealing," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 189-193, December.
    8. Miclo, Laurent, 1995. "Remarques sur l'ergodicité des algorithmes de recuit simulé sur un graphe," Stochastic Processes and their Applications, Elsevier, vol. 58(2), pages 329-360, August.
    9. Yiyo Kuo, 2014. "Design method using hybrid of line-type and circular-type routes for transit network system optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 600-613, July.
    10. Tsionas, Mike G. & Michaelides, Panayotis G., 2017. "Neglected chaos in international stock markets: Bayesian analysis of the joint return–volatility dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 95-107.
    11. Rodriguez-Tello, Eduardo & Hao, Jin-Kao & Torres-Jimenez, Jose, 2008. "An improved simulated annealing algorithm for bandwidth minimization," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1319-1335, March.
    12. Shao, Wei & Guo, Guangbao & Meng, Fanyu & Jia, Shuqin, 2013. "An efficient proposal distribution for Metropolis–Hastings using a B-splines technique," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 465-478.
    13. Sam Hui & Eric Bradlow, 2012. "Bayesian multi-resolution spatial analysis with applications to marketing," Quantitative Marketing and Economics (QME), Springer, vol. 10(4), pages 419-452, December.
    14. Anandamayee Majumdar & Corinna Gries & Jason Walker, 2011. "A non-stationary spatial generalized linear mixed model approach for studying plant diversity," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1935-1950, October.
    15. Reihaneh Entezari & Patrick E. Brown & Jeffrey S. Rosenthal, 2020. "Bayesian spatial analysis of hardwood tree counts in forests via MCMC," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    16. Gabriel M. Portal & Marcus Ritt & Leonardo M. Borba & Luciana S. Buriol, 2016. "Simulated annealing for the machine reassignment problem," Annals of Operations Research, Springer, vol. 242(1), pages 93-114, July.
    17. Graeme J. Doole & David J. Pannell, 2008. "Optimisation of a Large, Constrained Simulation Model using Compressed Annealing," Journal of Agricultural Economics, Wiley Blackwell, vol. 59(1), pages 188-206, February.
    18. Triki, E. & Collette, Y. & Siarry, P., 2005. "A theoretical study on the behavior of simulated annealing leading to a new cooling schedule," European Journal of Operational Research, Elsevier, vol. 166(1), pages 77-92, October.
    19. Peter Neal & Gareth Roberts, 2008. "Optimal Scaling for Random Walk Metropolis on Spherically Constrained Target Densities," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 277-297, June.
    20. Adam Tauman Kalai & Santosh Vempala, 2006. "Simulated Annealing for Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 31(2), pages 253-266, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:199:y:2024:i:c:s0167947324000951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.