IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v179y2023ics0167947322002225.html
   My bibliography  Save this article

Balancing covariates in multi-arm trials via adaptive randomization

Author

Listed:
  • Yang, Haoyu
  • Qin, Yichen
  • Wang, Fan
  • Li, Yang
  • Hu, Feifang

Abstract

Multi-arm trials are common in medical and health research for comparing the efficacy of competing drugs and interventions, among other applications. While ensuring covariate balance is a critical issue for comparative studies to be successful, classical multi-arm trials often fail to balance covariates among multi-treatments. An adaptive randomization via Mahalanobis distance for multi-arm trials is proposed to improve the covariate balance and thus the quality of the subsequent treatment effect estimation. The investigation scope includes the implementation of the proposed method and also its theoretical properties. Both theoretical and numerical results demonstrate the proposed method can attain desirable covariate balance, and thus improving the subsequent estimation efficiency. Compared with other competing methods, the computational cost of the proposed method is also favorable. An illustrative real case analysis of the efficacy of different doses of Canagliflozin, a treatment for patients with type 2 diabetes, also proves that the proposed method has broad applicability.

Suggested Citation

  • Yang, Haoyu & Qin, Yichen & Wang, Fan & Li, Yang & Hu, Feifang, 2023. "Balancing covariates in multi-arm trials via adaptive randomization," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:csdana:v:179:y:2023:i:c:s0167947322002225
    DOI: 10.1016/j.csda.2022.107642
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322002225
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107642?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018. "Inference Under Covariate-Adaptive Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1784-1796, October.
    2. Kari Lock Morgan & Donald B. Rubin, 2015. "Rerandomization to Balance Tiers of Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1412-1421, December.
    3. Zhenzhen Xu & John D. Kalbfleisch, 2013. "Repeated Randomization and Matching in Multi-Arm Trials," Biometrics, The International Biometric Society, vol. 69(4), pages 949-959, December.
    4. Quan Zhou & Philip A Ernst & Kari Lock Morgan & Donald B Rubin & Anru Zhang, 2018. "Sequential rerandomization," Biometrika, Biometrika Trust, vol. 105(3), pages 745-752.
    5. Miriam Bruhn & David McKenzie, 2009. "In Pursuit of Balance: Randomization in Practice in Development Field Experiments," American Economic Journal: Applied Economics, American Economic Association, vol. 1(4), pages 200-232, October.
    6. Abhijit V. Banerjee & Sylvain Chassang & Sergio Montero & Erik Snowberg, 2020. "A Theory of Experimenters: Robustness, Randomization, and Balance," American Economic Review, American Economic Association, vol. 110(4), pages 1206-1230, April.
    7. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Zhu & Hanzhong Liu, 2023. "Pair‐switching rerandomization," Biometrics, The International Biometric Society, vol. 79(3), pages 2127-2142, September.
    2. Zhao, Anqi & Ding, Peng, 2024. "No star is good news: A unified look at rerandomization based on p-values from covariate balance tests," Journal of Econometrics, Elsevier, vol. 241(1).
    3. Yuehao Bai, 2022. "Optimality of Matched-Pair Designs in Randomized Controlled Trials," Papers 2206.07845, arXiv.org.
    4. Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020. "Optimal data collection for randomized control trials," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.
    5. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018. "Inference Under Covariate-Adaptive Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1784-1796, October.
    6. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2019. "Inference under covariate‐adaptive randomization with multiple treatments," Quantitative Economics, Econometric Society, vol. 10(4), pages 1747-1785, November.
    7. Yichong Zhang & Xin Zheng, 2020. "Quantile treatment effects and bootstrap inference under covariate‐adaptive randomization," Quantitative Economics, Econometric Society, vol. 11(3), pages 957-982, July.
    8. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    9. Zhao, Anqi & Ding, Peng, 2021. "Covariate-adjusted Fisher randomization tests for the average treatment effect," Journal of Econometrics, Elsevier, vol. 225(2), pages 278-294.
    10. Adam Kapelner & Abba Krieger, 2023. "A matching procedure for sequential experiments that iteratively learns which covariates improve power," Biometrics, The International Biometric Society, vol. 79(1), pages 216-229, March.
    11. Simon Heß, 2017. "Randomization inference with Stata: A guide and software," Stata Journal, StataCorp LP, vol. 17(3), pages 630-651, September.
    12. Sylvain Chassang & Rong Feng, 2020. "The Cost of Imbalance in Clinical Trials," Working Papers 2020-12, Princeton University. Economics Department..
    13. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    14. Ivan A Canay & Vishal Kamat, 2018. "Approximate Permutation Tests and Induced Order Statistics in the Regression Discontinuity Design," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(3), pages 1577-1608.
    15. Sloczynski, Tymon, 2018. "A General Weighted Average Representation of the Ordinary and Two-Stage Least Squares Estimands," IZA Discussion Papers 11866, Institute of Labor Economics (IZA).
    16. Tong Wang & Wei Ma, 2021. "The impact of misclassification on covariate‐adaptive randomized clinical trials," Biometrics, The International Biometric Society, vol. 77(2), pages 451-464, June.
    17. Sven Resnjanskij & Jens Ruhose & Simon Wiederhold & Ludger Woessmann & Katharina Wedel, 2024. "Can Mentoring Alleviate Family Disadvantage in Adolescence? A Field Experiment to Improve Labor Market Prospects," Journal of Political Economy, University of Chicago Press, vol. 132(3), pages 1013-1062.
    18. Cai, Yong & Rafi, Ahnaf, 2024. "On the performance of the Neyman Allocation with small pilots," Journal of Econometrics, Elsevier, vol. 242(1).
    19. Tymon S{l}oczy'nski, 2018. "Interpreting OLS Estimands When Treatment Effects Are Heterogeneous: Smaller Groups Get Larger Weights," Papers 1810.01576, arXiv.org, revised May 2020.
    20. Max Tabord-Meehan, 2023. "Stratification Trees for Adaptive Randomisation in Randomised Controlled Trials," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(5), pages 2646-2673.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:179:y:2023:i:c:s0167947322002225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.